A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
分析 由余弦定理化簡條件得2ac•cosB•tanB=ac,再根據(jù)同角三角函數(shù)的基本關(guān)系得 sinB=$\frac{\sqrt{3}}{2}$,從而求得角B的值.
解答 解:∵在△ABC中,角A、B、C的對邊分別為a、b、c,(a2+c2-b2)tanB=$\sqrt{3}$ac,
∴2ac•cosB•tanB=$\sqrt{3}$ac,
∴sinB=$\frac{\sqrt{3}}{2}$,
∴由正弦定理可得:$\frac{bsinA}{a}$=sinB=$\frac{\sqrt{3}}{2}$,
故選:D.
點評 本題考查余弦定理的應(yīng)用,同角三角函數(shù)的基本關(guān)系,以及根據(jù)三角函數(shù)值及角的范圍求角的大。
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 增函數(shù) | B. | 減函數(shù) | C. | 不增不減函數(shù) | D. | 與a,b的取值有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{ON}$ | B. | $\overrightarrow{AM}$ | C. | $\overrightarrow{AN}$ | D. | 2$\overrightarrow{AN}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com