精英家教網 > 高中數學 > 題目詳情

【題目】方程的根的個數是____________

【答案】4

【解析】

,分別作出函數的圖象,由圖可知,兩函數圖象有四個交點,所以原方程有四個根故答案為

【方法點晴】本題主要考查對數函數的圖象以及函數的零點與方程的根,已知函數有零點(方程有根)求參數取值范圍的三種常用的方法:(1)直接法:直接根據題設條件構建關于參數的不等式,再通過解不等式確定參數范圍;(2)分離參數法:先將參數分離,轉化成求函數值域問題加以解決;(3)數形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解.一是轉化為兩個函數的圖象的交點個數問題,畫出兩個函數的圖象,其交點的個數就是函數零點的個數,二是轉化為的交點個數的圖象的交點個數問題 .

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

()若函數的圖像在處的切線不過第四象限且不過原點,求的取值范圍;

()設,若上不單調且僅在處取得最大值,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,底面是直角梯形,,,,側面底面,是以為底的等腰三角形.

)證明:

)若四棱錐的體積等于.問:是否存在過點的平面分別交于點,使得平面平面?若存在,求出的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求函數的單調區(qū)間;

(2)若函數 的圖象在點 處的切線的傾斜角為 ,對于任意的,函數在區(qū)間上總不是單調函數, 的取值范圍;

(3)求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,已知曲線的極坐標方程為,它在點處的切線為直線

(Ⅰ)求直線的直角坐標方程;

(Ⅱ)已知點為橢圓上一點,求點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列三個集合:

{x|yx2+1};

{y|yx2+1};

{(x,y)|yx2+1}.

(1)它們是不是相同的集合?

(2)它們各自的含義是什么?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,短軸兩個端點為,且四邊形是邊長為2的正方形.

1)求橢圓的方程;

(2)設是橢圓上一點,為橢圓長軸上一點,求的最大值與最小值;

(3)設是橢圓外的動點,滿足,點是線段與該橢圓的交點,點在線段上,并且滿足,,求點的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知上的偶函數,當時, .對于結論

(1)當時, ;(2)函數的零點個數可以為4,5,7;

(3)若,關于的方程有5個不同的實根,則;

(4)若函數在區(qū)間上恒為正,則實數的范圍是.

說法正確的序號是__________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓.(14分)

(1)此方程表示圓,求m的取值范圍;

(2)若(1)中的圓與直線x+2y-4=0相交于M、N兩點,且(O為坐標原點),求m的值;

(3)在(2)的條件下,求以為直徑的圓的方程.

查看答案和解析>>

同步練習冊答案