分析 (1)設圓心坐標為C(a,a+1),根據(jù)A、B兩點在圓上利用兩點的距離公式建立關于a的方程,解出a值.從而算出圓C的圓心和半徑,可得圓C的方程.
(2)設出點G、N的坐標,再由中點坐標公式用G點的坐標表示N點的坐標,再代入圓的方程,整理后得到點G軌跡方程.
解答 解:(1)由圓心C在直線y=x+1上,可設圓心的坐標為C(a,a+1),
再根據(jù)圓C經(jīng)過點A(-3,2)和點B(1,0),可得|CA|=|CB|,
即(a+3)2+(a-1)2=(a-1)2+(a+1)2,求得a=-2,
可得圓心C的坐標是(-2,-1),r=$\sqrt{10}$,
∴圓C的標準方程為(x+2)2+(y+1)2=10
(2)設N(x1,y1),G(x,y),
∵線段MN的中點是G,
∴由中點公式得x1=2x-3,y1=2y-4,
∵N在圓C上,∴(2x-1)2+(2y-3)2=10,
∴點G的軌跡方程是${(x-\frac{1}{2})^2}+{(y-\frac{3}{2})^2}=\frac{5}{2}$.
點評 本題是直線與圓的方程綜合性題,考查了用待定系數(shù)法求圓的方程,用代入法求動點的軌跡方程,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{7}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3x-5y-11=0 | B. | 5x-3y-13=0 | C. | 5x+3y-7=0 | D. | 3x+5y-1=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{π}{6}$ | B. | $\frac{π}{6}$ | C. | $-\frac{π}{3}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | $2\sqrt{2}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com