18.如表給出了某校500名12歲男孩中用隨機(jī)抽樣得出的120人的身高(單位cm).
 區(qū)間界限[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)
人數(shù)  510  22 3320 
 區(qū)間界限[146,150)[150,154)[154,158)   
 人數(shù) 11 5   
(1)列出樣本頻率分布表﹔
(2)畫(huà)出頻率分布直方圖﹔
(3)估計(jì)身高小于134cm的人數(shù)占總?cè)藬?shù)的百分比.

分析 根據(jù)樣本頻率分布表、頻率分布直方圖的一般步驟解題.

解答 解:(1)樣本頻率分布表如下:

分組頻數(shù)頻率
[122,126)50.04
[126,130)80.07
[130,134)100.08
[134,138)220.18
[138,142)330.28
[142,146)200.17
[146,150)110.09
[150,154)60.05
[154,158)50.04
合計(jì)1201
(2)其頻率分布直方圖如下:

(3)由樣本頻率分布表可知身高小于134 cm的男孩出現(xiàn)的頻率為0.04+0.07+0.08=0.19,
所以我們估計(jì)身高小于134 cm的人數(shù)占總?cè)藬?shù)的19%.

點(diǎn)評(píng) 本題考查頻率分布表、頻率分布圖的作法,考查滿足條件的百分比的求法,解題時(shí)要認(rèn)真審題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=x2-2ax+1.
(I)當(dāng)a=2,x∈[-2,3]時(shí),求函數(shù)的值域;
(II)求函數(shù)f(x)在[-1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,$\overrightarrow{a}$=(2,0),|$\overrightarrow$|=1,則|$\overrightarrow{a}$+2$\overrightarrow$|=( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在△ABC中,AB=3,AC=5,cosA=$\frac{1}{15}$,點(diǎn)P在平面ABC內(nèi),且$\overrightarrow{PB}$•$\overrightarrow{PC}$=-4,則|$\overrightarrow{PB}$+$\overrightarrow{PC}$+2$\overrightarrow{PA}$|的最大值是14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.給出下列命題:
①橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1與$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{25-k}$=1(0<k<9)有相等的焦距;
②“直線與雙曲線相切”是“直線與雙曲線只有一個(gè)公共點(diǎn)”的充分不必要條件;
③已知P是曲線$\left\{\begin{array}{l}{x=3cosθ}\\{y=4sinθ}\end{array}\right.$(θ為參數(shù),0≤θ≤π)上一點(diǎn),坐標(biāo)原點(diǎn)為O,直線PO的傾斜角為$\frac{π}{4}$,則P點(diǎn)坐標(biāo)是($\frac{3\sqrt{2}}{2}$,2$\sqrt{2}$);
④直線y=mx+1-m與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1的位置關(guān)系隨著m的變化而變化;
⑤雙曲線$\frac{{x}^{2}}{{a}^{2}}$$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,若雙曲線上存在一點(diǎn)P,滿足|PF1|=3|PF2|,則雙曲線離心率的取值范圍(1,2].
其中正確命題的所有序號(hào)有①②⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.(1)已知函數(shù)f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,判斷函數(shù)的奇偶性,并加以證明.
(2)是否存在a使f(x)=$\frac{a{3}^{x}-1+a}{{3}^{x}+1}$為R上的奇函數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.直線y=x被圓x2+(y-2)2=4截得的弦長(zhǎng)為( 。
A.3B.3$\sqrt{3}$C.2$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,滿足(2b-a)cosC=ccosA.
(1)求角C的大小;
(2)若c=2,且△ABC的面積為$\sqrt{3}$,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知α,β∈(0,$\frac{π}{2}$)且sin(α+2β)=$\frac{1}{3}$
(3)若α+β=$\frac{2π}{3}$,求sinβ的值;
(4)若sinβ=$\frac{4}{5}$,求cosα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案