(本小題滿分14分)已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(4,1),B(6,-3),C(-3,0),求△ABC外接圓的方程.

 

【答案】

   

【解析】本題可以利用待定系數(shù)法設(shè)出圓的一般方程,然后根據(jù)題目條件建立三個(gè)關(guān)于D、E、F的方程,聯(lián)立解方程組即可求出圓的方程.

也可以利用圓的幾何性質(zhì),圓心在弦的垂直平分線,確定圓心及半徑,求出圓的標(biāo)準(zhǔn)方程也可.

解法一:設(shè)所求圓的方程是. ①——————2分

    因?yàn)锳(4,1),B(6,-3),C(-3,0)都在圓上,

    所以它們的坐標(biāo)都滿足方程①,于是

                  ————————————8分

解得——————————————12分

    所以△ABC的外接圓的方程是.————————14分

(其他解法參照給分)

    解法二:設(shè)所求方程為,則易求得,,于是所求圓的方程是

解法三:因?yàn)椤鰽BC外接圓的圓心既在AB的垂直平分線上,也在BC的垂直平分線上,所以先求AB、BC 的垂直平分線方程,求得的交點(diǎn)坐標(biāo)就是圓心坐標(biāo).

,

線段AB的中點(diǎn)為(5,-1),線段BC的中點(diǎn)為,

∴AB的垂直平分線方程為,  ①

       BC的垂直平分線方程.   ②

    解由①②聯(lián)立的方程組可得∴△ABC外接圓的圓心為E(1,-3),

半徑

故△ABC外接圓的方程是

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案