【題目】如圖所示, 與四邊形所在平面垂直,且.

(1)求證:

(2)若的中點,設(shè)直線與平面所成角為,求.

【答案】(1)證明見解析;(2).

【解析】試題分析:1由三角形全等即等腰三角形的性質(zhì)可得由線面垂直的性質(zhì)可得 ,從而平面,由此能證明.2分別以所在直線為,且平行于的直線為軸建立空間直角坐標系,求出平面的一個法向量及直線的方向向量,根據(jù)空間向量夾角余弦公式及同角三角函數(shù)之間的關(guān)系,可得結(jié)果.

試題解析:(1)證明:由PA⊥平面ABCD,ABAD,可得PBPD,

BCCD,PCPC,所以△PBC≌△PDC,所以∠PBC=∠PDC.

因為PDDC,所以PBBC.3分

因為PA⊥平面ABCD,BC平面ABCD,

所以PABC.

PAPBP,所以BC⊥平面PAB.

因為AB平面PAB,所以ABBC.5分

(2)由BDBCCD,ABBC,可得∠ABD=30°,

又已知ABAD,BDPA,所以AB=1.

如圖所示,分別以BC,BA所在直線為xy軸,過B且平行于PA的直線為z軸建立空間直角坐標系,

B(0,0,0),P(0,1, ),C(,0,0),E, , ),D, ,0),所以=(, ,- ), =(, , ), =(, ,0).

設(shè)平面BDE的法向量n=(x,y,z),

,即z=-2,得n=(3,- ,-2),

所以sin θ.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐PABCD,PA⊥平面ABCD,底面ABCD為矩形,ABPABC(a0)

(1)a1求證BDPC;

(2)BC邊上有且只有一個點Q,使得PQQD求此時二面角APDQ的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在平面多邊形中,四邊形為正方形, , ,沿著將圖形折成圖2,其中 的中點.

(1)求證: ;

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論上的單調(diào)性;

(2)是否存在實數(shù)a,使得上的最大值為,若存在,求滿足條件的a的個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點為圓的圓心, 是圓上的動點,點在圓的半徑上,且有點上的點,滿足, .

1)當點在圓上運動時,求點的軌跡方程;

2)若斜率為的直線與圓相切,直線與(1)中所求點的軌跡交于不同的兩點, , 是坐標原點,且時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x) (其中e是自然對數(shù)的底數(shù),常數(shù)a0)

(1)a1,求曲線在(0f(0))處的切線方程;

(2)若存在實數(shù)x(a,2]使得不等式f(x)e2成立,a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)x(1)R上的偶函數(shù).

(1)對任意的x[1,2],不等式m·2x1恒成立,求實數(shù)m的取值范圍.

(2)g(x)1,設(shè)函數(shù)F(x)g(4xn)g(2x13)有零點,求實數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程是為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)寫出曲線的直角坐標方程;

(2)設(shè)點分別在、上運動,若的最小值為1,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在原點O,左焦點為F1(-1,0)的橢圓C的左頂點為A,上頂點為B,F1到直線AB的距離為|OB|.

(1)求橢圓C的方程;

(2)如圖,若橢圓,橢圓,則稱橢圓C2是橢圓C1λ倍相似橢圓.已知C2是橢圓C的3倍相似橢圓,若橢圓C的任意一條切線l交橢圓C2于兩點M、N,試求弦長|MN|的取值范圍.

查看答案和解析>>

同步練習冊答案