【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間和的極值;

(2)對(duì)于任意的,都有,求實(shí)數(shù)的取值范圍.

【答案】(1)見(jiàn)解析;(2)

【解析】

(1)對(duì)f(x)求導(dǎo),再求導(dǎo),得到二次導(dǎo)數(shù)恒大于0,又,得到的x的范圍,即可得到函數(shù)的單調(diào)區(qū)間及極值.

(2)由題意,只需,結(jié)合(1)可得最小值為,比較得到最大值,可求得結(jié)論.

(1)∵,,其中的導(dǎo)函數(shù).

顯然,,因此單調(diào)遞增,

,所以上為負(fù)數(shù),在上為正數(shù),

因此上單調(diào)遞減,在上單調(diào)遞增,

當(dāng)時(shí),取得極小值為f(0)=1,無(wú)極大值.

的極小值為1,無(wú)極大值.單增區(qū)間為,單減區(qū)間為.

(2)依題意,只需

由(1)知,上遞減,在上遞增,

上的最小值為;

最大值為中的較大者

,

因此,

上的最大值為

所以,,解得.

∴實(shí)數(shù)的取值范圍是:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),直線(xiàn)為平面內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)作直線(xiàn)的垂線(xiàn),垂足為點(diǎn),且.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)過(guò)點(diǎn)作兩條互相垂直的直線(xiàn)分別交軌跡四點(diǎn).求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班上午有五節(jié)課,分別安排語(yǔ)文,數(shù)學(xué),英語(yǔ),物理,化學(xué)各一節(jié)課.要求語(yǔ)文與化學(xué)相鄰,數(shù)學(xué)與物理不相鄰,且數(shù)學(xué)課不排第一節(jié),則不同排課法的種數(shù)是

A. 24B. 16C. 8D. 12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】201910月,德國(guó)爆發(fā)出芳香烴門(mén)事件,即一家權(quán)威的檢測(cè)機(jī)構(gòu)在德國(guó)銷(xiāo)售的奶粉中隨機(jī)抽檢了16(德國(guó)4款,法國(guó)8款,荷蘭4),其中8款檢測(cè)出芳香烴礦物油成分,此成分會(huì)嚴(yán)重危害嬰幼兒的成長(zhǎng),有些奶粉已經(jīng)遠(yuǎn)銷(xiāo)至中國(guó).A地區(qū)聞?dòng)嵑,立即組織相關(guān)檢測(cè)員對(duì)這8款品牌的奶粉進(jìn)行抽檢,已知該地區(qū)有6家嬰幼兒用品商店在售這幾種品牌的奶粉,甲、乙、丙3名檢測(cè)員分別負(fù)責(zé)進(jìn)行檢測(cè),每人至少抽檢1家商店,且檢測(cè)過(guò)的商店不重復(fù)檢測(cè),則甲檢測(cè)員檢測(cè)2家商店的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知銳角的三個(gè)內(nèi)角的余弦值分別等于鈍角的三個(gè)內(nèi)角的正弦值,其中,若,則的最大值為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在圓周上依次有個(gè)點(diǎn),今隨機(jī)地選取其中個(gè)點(diǎn)為頂點(diǎn)作凸邊形,已知選取與否的可能性是相同的,試求對(duì)每個(gè),邊形的兩個(gè)相鄰頂點(diǎn)(規(guī)定)之間至少有中的個(gè)點(diǎn)的概率,其中,是給定的一組正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù),為常數(shù),且是函數(shù)的一個(gè)極值點(diǎn).

)求的值;

)若函數(shù),,求的單調(diào)區(qū)間;

) 過(guò)點(diǎn)可作曲線(xiàn)的三條切線(xiàn),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知直線(xiàn)與曲線(xiàn)相切于兩點(diǎn),則對(duì)于函數(shù),以下結(jié)論成立的是(

A.3個(gè)極大值點(diǎn),2個(gè)極小值點(diǎn)B.2個(gè)零點(diǎn)

C.2個(gè)極大值點(diǎn),沒(méi)有極小值點(diǎn)D.沒(méi)有零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)圓錐形量杯的高為厘米,其母線(xiàn)與軸的夾角為

(1)求該量杯的側(cè)面積;

(2)若要在該圓錐形量杯的一條母線(xiàn)上,刻上刻度,表示液面到達(dá)這個(gè)刻度時(shí),量杯里的液體的體積是多少.當(dāng)液體體積是立方厘米時(shí),刻度的位置與頂點(diǎn)之間的距離是多少厘米(精確到厘米)?

查看答案和解析>>

同步練習(xí)冊(cè)答案