已知函數(shù)y=,使函數(shù)值為5的x的值是
[     ]
A.-2
B.2或-
C.2或-2
D.2或-2或-
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=cos(x+
π3
).
(1)用“五點法”作出它在長度為一個周期的閉區(qū)間上的簡圖;
(2)求使函數(shù)y取最大值和最小值時自變量x的集合,并求出它的最大值和最小值;
(3)指出該函數(shù)的增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•紹興一模)已知函數(shù)f(x)=2asinxcosx-2bsin2x+b(a、b為常數(shù),且a<0)的圖象過點(0,
3
),且函數(shù)f(x)的最大值為2.
(1)求函數(shù)y=f(x)的解析式,并寫出其單調(diào)遞增區(qū)間;
(2)把函數(shù)y=f(x)的圖象向右平移m(m>0)個單位,使所得的圖象關(guān)于y軸對稱,求實數(shù)m的最小值及平移后圖象所對應的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•浦東新區(qū)二模)已知函數(shù)y=f(x),x∈D,如果對于定義域D內(nèi)的任意實數(shù)x,對于給定的非零常數(shù)m,總存在非零常數(shù)T,恒有f(x+T)>m•f(x)成立,則稱函數(shù)f(x)是D上的m級類增周期函數(shù),周期為T.若恒有f(x+T)=m•f(x)成立,則稱函數(shù)f(x)是D上的m級類周期函數(shù),周期為T.
(1)已知函數(shù)f(x)=-x2+ax是[3,+∞)上的周期為1的2級類增周期函數(shù),求實數(shù)a的取值范圍;
(2)已知 T=1,y=f(x)是[0,+∞)上m級類周期函數(shù),且y=f(x)是[0,+∞)上的單調(diào)遞增函數(shù),當x∈[0,1)時,f(x)=2x,求實數(shù)m的取值范圍;
(3)下面兩個問題可以任選一個問題作答,如果你選做了兩個,我們將按照問題(Ⅰ)給你記分.
(Ⅰ)已知當x∈[0,4]時,函數(shù)f(x)=x2-4x,若f(x)是[0,+∞)上周期為4的m級類周期函數(shù),且y=f(x)的值域為一個閉區(qū)間,求實數(shù)m的取值范圍;
(Ⅱ)是否存在實數(shù)k,使函數(shù)f(x)=coskx是R上的周期為T的T級類周期函數(shù),若存在,求出實數(shù)k和T的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:紹興一模 題型:解答題

已知函數(shù)f(x)=2asinxcosx-2bsin2x+b(a、b為常數(shù),且a<0)的圖象過點(0,
3
),且函數(shù)f(x)的最大值為2.
(1)求函數(shù)y=f(x)的解析式,并寫出其單調(diào)遞增區(qū)間;
(2)把函數(shù)y=f(x)的圖象向右平移m(m>0)個單位,使所得的圖象關(guān)于y軸對稱,求實數(shù)m的最小值及平移后圖象所對應的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=x+有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,]上是減函數(shù),在[,+∞)上是增函數(shù).

(1)如果函數(shù)y=x+(x>0)的值域為[6,+∞),求b的值;

(2)研究函數(shù)y=x2+(常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并說明理由;

(3)對函數(shù)y=x+和y=x2+(常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例,研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)f(x)=(x2+)n+(+x)n(n是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結(jié)論).

查看答案和解析>>

同步練習冊答案