設(shè)圓C與兩圓x2+(y+
5
2=4,x2+(y-
5
2=81中的一個內(nèi)切,另一個外切,求C的圓心軌跡L的方程.
考點:軌跡方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:由題意直接利用已知列出關(guān)系式,結(jié)合圓錐曲線的定義,即可求出圓心C的軌跡方程.
解答: 解:設(shè)動圓半徑為r,則兩圓的半徑分別為2,9,兩圓心為F1(0,-
5
)、F2(0,
5
),
由題意得:|CF1|=r+2,|CF2|=9-r,
∴|CF1|+|CF2|=11=2a>|F1F2|=2
5
=2c,
可知圓心C的軌跡是以原點為中心,焦點在x軸上,且實軸為11,焦距為2
5
的橢圓,
因此a=5.5,c=
5
,則b2=a2-c2=25.25,
∴軌跡L的方程為
x2
30.25
+
y2
25.25
=1
點評:本題考查曲線軌跡方程的求法,圓的幾何性質(zhì)的應(yīng)用和圓錐曲線的定義是解決問題的關(guān)鍵,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=x2(1-x)3的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}的前項n和為Sn,且Sn=2an-2,令bn=log2an
(1)求數(shù)列{an}的通項公式.
(2)設(shè)Cn=anbn,求數(shù)列Cn的前n項和Tn
(3)求使?jié)M足
Tn-2
Tn+1-2
1000
2009
的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用二項式定理證明:
(1)2n+2•3n+5n-4(n∈N*)能被25整除;
(2)(
2
3
n-1
2
n+1
(n∈N*,且n≥3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

按要求計算下列問題:
(1)若方程mx2-(1-m)x+m=0有兩個實數(shù)根,則m的取值范圍?
(2)1736(8)轉(zhuǎn)換為六進制數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知n∈N+,求證:2n>1+2+3+…+n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某小區(qū)想利用一矩形空地ABCD建市民健身廣場,設(shè)計時決定保留空地邊上的一水塘(如圖中陰影部分),水塘可近似看作一個等腰直角三角形,其中AD=60m,AB=40m,且△EFG中,∠EGF=90°,經(jīng)測量得到AE=10m,EF=20m.為保證安全同時考慮美觀,健身廣場周圍準備加設(shè)一個保護欄.設(shè)計時經(jīng)過點G作一直線交AB,DF于M,N,從而得到五邊形MBCDN的市民健身廣場,設(shè)DN=x(m).
(1)將五邊形MBCDN的面積y表示為x的函數(shù);
(2)當x為何值時,市民健身廣場的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(-cosx,sinx),
b
=(cosx,
3
cosx),f(x)=
a
b
,x∈[0,π],則當f(x)取最大值時,求
a
,
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x2+xy-y2=0,則
x2+3xy+y2
x2+y2
=
 

查看答案和解析>>

同步練習冊答案