已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
C:的左右焦點為F1,F(xiàn)2,離心率為e,直線l:y=ex+a與x軸、y軸分別交于點A、B,M是直線l與橢圓C的一個公共點,且
AM
=
3
4
AB

(1)計算橢圓的離心率e
(2)若直線l向右平移一個單位后得到l′,l′被橢圓C截得的弦長為
5
4
,則求橢圓C的方程.
分析:(1)直線l方程與橢圓方程聯(lián)立,求出交點M的坐標,利用
AM
=
3
4
AB
得到e值.
(2)由(1)中求得的e值,可求出直線l方程,并化簡橢圓方程,使其只含一個參數(shù),設(shè)l′方程,與橢圓方程聯(lián)立,用弦長公式求出l′被橢圓C截得的弦長,令其等于
5
4
,即可得到橢圓方程.
解答:解:(1)y=ex+a,∴A(-
a
e
,0),B(0,a) 
y=ex+a
x2
a2
+
y2
b2
=1
,∴
x=-c
y=
b2
a
∴M(-c,
b2
a
),由
AM
=
3
4
AB
,得 
(-c+
a
e
,
b2
a
)=
3
4
a
e
,a),即
a
e
-c= 
3
4
a
e
b2
a
=
3
4
a
∴e2=1-
3
4
=
1
4
,∴e=
1
2
     
(2)∵e=
1
2
,設(shè)橢圓的方程為3x2+4y2=3a2,l:y=
1
2
x-
1
2
+a
3x2+4y2=3a2
y=
1
2
x-
1
2
+a
消y,得4x2+(4a-2)x+a2-4a+1=0.設(shè)l交橢圓于B(x1,y1),C(x2,y2
∴x1+x2=-
4a-2
4
,x1x2=
a2-4a+1
4

    
∴l(xiāng)=
1+k2
(x1+x2)2-4x1x2
=
5
4
12a-3
4
=
5
4
    
∴a=
2
3
∴橢圓的方程為
x2
4
9
+
y2
1
3
=1
點評:本題主要考查了利用直線與橢圓位置關(guān)系求參數(shù)的值,注意韋達定理的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點分別為F1,F(xiàn)2,左頂點為A,若|F1F2|=2,橢圓的離心率為e=
1
2

(Ⅰ)求橢圓的標準方程,
(Ⅱ)若P是橢圓上的任意一點,求
PF1
PA
的取值范圍
(III)直線l:y=kx+m與橢圓相交于不同的兩點M,N(均不是長軸的頂點),AH⊥MN垂足為H且
AH
2
=
MH
HN
,求證:直線l恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點F(-c,0)是長軸的一個四等分點,點A、B分別為橢圓的左、右頂點,過點F且不與y軸垂直的直線l交橢圓于C、D兩點,記直線AD、BC的斜率分別為k1,k2
(1)當(dāng)點D到兩焦點的距離之和為4,直線l⊥x軸時,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率是
3
2
,且經(jīng)過點M(2,1),直線y=
1
2
x+m(m<0)
與橢圓相交于A,B兩點.
(1)求橢圓的方程;
(2)當(dāng)m=-1時,求△MAB的面積;
(3)求△MAB的內(nèi)心的橫坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•威海二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
6
3
,過右焦點做垂直于x軸的直線與橢圓相交于兩點,且兩交點與橢圓的左焦點及右頂點構(gòu)成的四邊形面積為
2
6
3
+2

(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)點M(0,2),直線l:y=1,過M任作一條不與y軸重合的直線與橢圓相交于A、B兩點,若N為AB的中點,D為N在直線l上的射影,AB的中垂線與y軸交于點P.求證:
ND
MP
AB
2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F,過F作y軸的平行線交橢圓于M、N兩點,若|MN|=3,且橢圓離心率是方程2x2-5x+2=0的根,求橢圓方程.

查看答案和解析>>

同步練習(xí)冊答案