某同學(xué)在電腦上打下了一串黑白圓,如圖所示,按這種規(guī)律往下排,那么第36個圓的顏色應(yīng)是( 。
A、黑色B、白色
C、白色可能性大D、黑色可能性大
考點:歸納推理
專題:計算題,推理和證明
分析:把○○○●●看作一個整體,發(fā)現(xiàn)并利用周期性求解.
解答: 解:把○○○●●看作一個整體,這串符號以這個整體重復(fù)出現(xiàn).
由于36=5×7+1,前35個中共出現(xiàn)7×3=21個白圓,7×2=14個黑圓,接著是一個白圓.
故選B.
點評:解題的關(guān)鍵是找出圖形的變化規(guī)律.這里的規(guī)律是周期性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

程序框圖的運算結(jié)果為( 。
A、12B、24C、16D、48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2cos
πx
3
(x≤2000)
2x-2010(x>2000)
,則f(f(2014))=( 。
A、
3
B、-
3
C、1
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且當(dāng)x∈[0,1]時,f(x)=x,則方程f(x)=log3|x|的解個數(shù)是(  )
A、9個B、2個
C、4 個D、6個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中既是奇函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞減的函數(shù)是( 。
A、y=
1
2
+
1
2x+1
B、y=
1
2
-
1
2x+1
C、y=
1
2
+
1
2x-1
D、y=
1
2
-
1
2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果兩個方程的曲線經(jīng)過若干次平移或?qū)ΨQ變換后能夠完全重合,則稱這兩個方程為“互為生成方程對”.給出下列四對方程:
①y=sinx+cosx和y=
2
sinx+1;
②y2-x2=2和x2-y2=2;
③y2=4x和x2=4y;
④y=ln(x-1)和y=ex+1.
其中是“互為生成方程對”有( 。
A、1對B、2對C、3對D、4對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一同學(xué)為研究函數(shù)f(x)=
1+x2
+
1+(1-x)2
(0≤x≤1)的性質(zhì),構(gòu)造了如圖所示的兩個邊長為1的正方形ABCD和BEFC,點P是邊BC上的一個動點,設(shè)CP=x,則AP+PF=f(x),請你參考這些信息,推知函數(shù)g(x)=4f(x)-9的零點的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知二面角α-MN-β的大小為60°,菱形ABCD在面β內(nèi),A、B兩點在棱MN上,∠BAD=60°,E是AB的中點,DO⊥面α,垂足為O.
(Ⅰ)證明:AB⊥平面ODE;
(Ⅱ)求異面直線BC與OD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點為F(-2,0),離心率為
6
3

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)O為坐標(biāo)原點,T為直線x=-3上一點,過F作TF的垂線交橢圓于P、Q,當(dāng)四邊形OPTQ是平行四邊形時,求四邊形OPTQ的面積.

查看答案和解析>>

同步練習(xí)冊答案