已知橢圓數(shù)學(xué)公式,點M(2,3)過M點引直線交橢圓于A、B兩點,求弦AB的中點P的軌跡方程.

解:設(shè)A(x1,y1)、B(x2,y2)、P(x,y),直線AB:y-3=k(x-3)
則x12+4y12=4①,x22+4y22=4②
①-②得:(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0
整理得:
化簡得:k=代入y-3=k(x-3)
整理得:x2+4y2-3x-12y=0,即為AB的中點P的軌跡方程
分析:利用點差法來求弦的中點問題.可先設(shè)弦AB的中點P以及A,B點的坐標(biāo),把直線AB斜率分別用P點坐標(biāo)以及M點坐標(biāo)表示,化簡即可得含x,y的方程,即弦AB的中點P的軌跡方程.
點評:本題主要考查了點差法求中點弦斜率問題,屬于圓錐曲線的常規(guī)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省唐山市高三上學(xué)期摸底考試理科數(shù)學(xué)試卷 題型:解答題

(本小題滿分12分)

已知橢圓經(jīng)過點M(-2,-1),離心率為。過點M作傾斜角

 

互補的兩條直線分別與橢圓C交于異于M的另外兩點P、Q。

(I)求橢圓C的方程;

(II)能否為直角?證明你的結(jié)論;

(III)證明:直線PQ的斜率為定值,并求這個定值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆福建省高二上學(xué)期期末考試理科數(shù)學(xué) 題型:解答題

(本小題滿分14分)已知橢圓經(jīng)過點M(2,1),O為坐標(biāo)原點,平行于OM的直線ly軸上的截距為mm≠0) 

(1)當(dāng) 時,判斷直線l與橢圓的位置關(guān)系;

(2)當(dāng)時,P為橢圓上的動點,求點P到直線l距離的最小值;

(3)如圖,當(dāng)l交橢圓于A、B兩個不同點時,求證:

直線MA、MB與x軸始終圍成一個等腰三角形 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓數(shù)學(xué)公式經(jīng)過點M(-2,-1),離心率為數(shù)學(xué)公式.過點M作傾斜角互補的兩條直線分別與橢圓C交于異于M的另外兩點P、Q.
(I)求橢圓C的方程;
(II)∠PMQ能否為直角?證明你的結(jié)論;
(III)證明:直線PQ的斜率為定值,并求這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0119 期中題 題型:解答題

已知橢圓經(jīng)過點M(2,1),O為坐標(biāo)原點,平行于OM的直線l在y軸上的截距為m(m≠0),
(1)當(dāng)m=3時,判斷直線l與橢圓的位置關(guān)系(寫出結(jié)論,不需證明);
(2)當(dāng)m=3時,P為橢圓上的動點,求點P到直線l距離的最小值;
(3)如圖,當(dāng)l交橢圓于A、B兩個不同點時,求證直線MA、MB與x軸始終圍成一個等腰三角形。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省廣州市實驗中學(xué)高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓經(jīng)過點M(2,1),O為坐標(biāo)原點,平行于OM的直線l在y軸上的截距為m(m≠0).
(1)當(dāng)m=3時,判斷直線l與橢圓的位置關(guān)系(寫出結(jié)論,不需證明);
(2)當(dāng)m=3時,P為橢圓上的動點,求點P到直線l距離的最小值;
(3)如圖,當(dāng)l交橢圓于A、B兩個不同點時,求證直線MA、MB與x軸始終圍成一個等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案