【題目】某投資公司計(jì)劃在甲、乙兩個(gè)互聯(lián)網(wǎng)創(chuàng)新項(xiàng)目上共投資1200萬(wàn)元,每個(gè)項(xiàng)目至少要投資300萬(wàn)元.根據(jù)市場(chǎng)分析預(yù)測(cè):甲項(xiàng)目的收益與投入滿足,乙項(xiàng)目的收益與投入滿足.設(shè)甲項(xiàng)目的投入為.
(1)求兩個(gè)項(xiàng)目的總收益關(guān)于的函數(shù).
(2)如何安排甲、乙兩個(gè)項(xiàng)目的投資,才能使總收益最大?最大總收益為多少?(注:收益與投入的單位都為“萬(wàn)元”)
【答案】(1);(2)甲項(xiàng)目投資500萬(wàn)元,乙項(xiàng)目投資700萬(wàn)元時(shí),總收益最大,最大總收益為360萬(wàn)元.
【解析】
(1)根據(jù)題意,列出函數(shù)解析式,再根據(jù)題目要求,求解定義域;
(2)將函數(shù)進(jìn)行還原,轉(zhuǎn)化為求解二次函數(shù)的最大值問題.
(1)由題知,甲項(xiàng)目投資萬(wàn)元,乙項(xiàng)目投資萬(wàn)元.
所以.
整理得:
依題意得解得.
故.
(2)令,則.
.
當(dāng),即時(shí),的最大值為360.
所以當(dāng)甲項(xiàng)目投資500萬(wàn)元,乙項(xiàng)目投資700萬(wàn)元時(shí),
總收益最大,最大總收益為360萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知(,為此函數(shù)的定義域)同時(shí)滿足下列兩個(gè)條件:①函數(shù)在內(nèi)單調(diào)遞增或單調(diào)遞減;②如果存在區(qū)間,使函數(shù)在區(qū)間上的值域?yàn)?/span>,那么稱,為閉函數(shù);
請(qǐng)解答以下問題:
(1) 求閉函數(shù)符合條件②的區(qū)間;
(2) 判斷函數(shù)是否為閉函數(shù)?并說明理由;
(3)若是閉函數(shù),求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)滿足:,的最小值為1,且在軸上的截距為4.
(1)求此二次函數(shù)的解析式;
(2)若存在區(qū)間,使得函數(shù)的定義域和值域都是區(qū)間,則稱區(qū)間為函數(shù)的“不變區(qū)間”.試求函數(shù)的不變區(qū)間;
(3)若對(duì)于任意的,總存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式的解集包含[–1,1],求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ )的周期為π,且圖象上的一個(gè)最低點(diǎn)為M( ).
(1)求f(x)的解析式及單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,]時(shí),求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年10月18日至10月24日,中國(guó)共產(chǎn)黨第十九次全國(guó)代表大會(huì)簡(jiǎn)稱黨的“十九大”在北京召開一段時(shí)間后,某單位就“十九大”精神的領(lǐng)會(huì)程度隨機(jī)抽取100名員工進(jìn)行問卷調(diào)查,調(diào)查問卷共有20個(gè)問題,每個(gè)問題5分,調(diào)查結(jié)束后,發(fā)現(xiàn)這100名員工的成績(jī)都在內(nèi),按成績(jī)分成5組:第1組,第2組,第3組,第4組,第5組,繪制成如圖所示的頻率分布直方圖,已知甲、乙、丙分別在第3,4,5組,現(xiàn)在用分層抽樣的方法在第3,4,5組共選取6人對(duì)“十九大”精神作深入學(xué)習(xí).
求這100人的平均得分同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表;
求第3,4,5組分別選取的作深入學(xué)習(xí)的人數(shù);
若甲、乙、丙都被選取對(duì)“十九大”精神作深入學(xué)習(xí),之后要從這6人隨機(jī)選取2人再全面考查他們對(duì)“十九大”精神的領(lǐng)會(huì)程度,求甲、乙、丙這3人至多有一人被選取的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)、為雙曲線的左、右焦點(diǎn),過作垂直于軸的直線,在軸上方交雙曲線于點(diǎn),且,圓的方程是.
(1)求雙曲線的方程;
(2)過雙曲線上任意一點(diǎn)作該雙曲線兩條漸近線的垂線,垂足分別為、,求的值;
(3)過圓上任意一點(diǎn)作圓的切線交雙曲線于、兩點(diǎn),中點(diǎn)為,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示,分別是圖象的最高點(diǎn)與相鄰的最低點(diǎn),且,,為坐標(biāo)原點(diǎn).
(1)求函數(shù)的解析式;
(2)將函數(shù)的圖象向左平移1個(gè)單位后得到函數(shù)的圖象,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下關(guān)于線性方程組解的個(gè)數(shù)的命題.
①,②,③,④,
(1)方程組①可能有無(wú)窮多組解;
(2)方程組②可能有且只有兩組不同的解;
(3)方程組③可能有且只有唯一一組解;
(4)方程組④可能有且只有唯一一組解.
其中真命題的序號(hào)為________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com