設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)n,都有an=5Sn+1成立,記
(I)求數(shù)列{an}與數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}的前n項(xiàng)和為Rn,是否存在正整數(shù)k,使得Rn≥4k成立?若存在,找出一個(gè)正整數(shù)k;若不存在,請(qǐng)說明理由;
(Ⅲ)記cn=b2n-b2n-1(n∈N*),設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,求證:對(duì)任意正整數(shù)n都有
【答案】分析:(1)根據(jù)題中給的an=5Sn+1,繼而可得an-1=5sn-1+1,兩式子相減得,an-an-1=5an,因此,因而可得出an,bn的通項(xiàng)公式.
(2)根據(jù)bn的通項(xiàng)公式,算出的前n項(xiàng)和為Rn,再計(jì)算出是否存在正整數(shù)k.
(3)根據(jù)bn的通項(xiàng)公式,計(jì)算出cn的通項(xiàng)公式,再比較Tn的大小.
解答:解:( I)當(dāng)n=1時(shí),a1=5S1+1,∴
又∵an=5Sn+1,an+1=5Sn+1+1∴
∴數(shù)列{an}是首項(xiàng)為,公比為的等比數(shù)列,
,
( II)不存在正整數(shù)k,使得Rn≥4k成立.
證明:由(I)知

∴當(dāng)n為偶數(shù)時(shí),設(shè)n=2m(m∈N*
∴Rn=(b1+b2)+(b3+b4)+…+(b2m-1+b2m)<8m=4n
當(dāng)n為奇數(shù)時(shí),設(shè)n=2m-1(m∈N*
∴Rn=(b1+b2)+(b3+b4)+…+(b2m-3+b2m-2)+b2m-1<8(m-1)+4=8m-4=4n
∴對(duì)于一切的正整數(shù)n,都有Rn<4k
∴不存在正整數(shù)k,使得Rn≥4k成立.
(III)由
,∴,當(dāng)n=1時(shí),,
當(dāng)n≥2時(shí),


點(diǎn)評(píng):此題主要考查數(shù)列遞推式的求解及相關(guān)計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列an的前n項(xiàng)的和為Sn,a1=
3
2
,Sn=2an+1-3

(1)求a2,a3;
(2)求數(shù)列an的通項(xiàng)公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域?yàn)镈n,若Dn內(nèi)的整點(diǎn)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列an的前n項(xiàng)和為SnTn=
Sn
5•2n
,若對(duì)一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則
S4
a3
的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案