已知雙曲線C:
x2
2
-y2=1

(1)求雙曲線C的漸近線方程;
(2)已知點M的坐標為(0,1).設P是雙曲線C上的點,Q是點P關于原點的對稱點.記λ=
MP
MQ
.求λ的取值范圍;
(3)已知點D,E,M的坐標分別為(-2,-1),(2,-1),(0,1),P為雙曲線C上在第一象限內(nèi)的點.記l為經(jīng)過原點與點P的直線,s為△DEM截直線l所得線段的長.試將s表示為直線l的斜率k的函數(shù).
分析:(1)在雙曲線C:
x2
2
-y2=1
,把1換成0,就得到它的漸近線方程.
(2)設P的坐標為(x0,y0),則Q的坐標為(-x0,-y0),先求出
MP
MQ
,然后運用向量數(shù)量積的坐標運算能夠求出λ的取值范圍.
(3)根據(jù)P為雙曲線C上第一象限內(nèi)的點,可知直線l的斜率k∈(0,
2
2
).
再由題設條件根據(jù)k的不同取值范圍試將s表示為直線l的斜率k的函數(shù).
解答:解:(1)在雙曲線C:
x2
2
-y2=1
,把1換成0,
所求漸近線方程為y-
2
2
x=0, y+
2
2
x=0

(2)設P的坐標為(x0,y0),則Q的坐標為(-x0,-y0),
λ=
MP
MQ
=(x0y0-1)•(-x0,-yo-1)
=-
x
2
0
-
y
2
0
+1=-
3
2
x
2
0
+2.

|x0|≥
2

∴λ的取值范圍是(-∞,-1].
(3)若P為雙曲線C上第一象限內(nèi)的點,
則直線l的斜率k∈(0,
2
2
).

由計算可得,當k∈(0,
1
2
]時,s(k)=
2
1-k2
1+k2
;
k∈(
1
2
,
2
2
)時,s(k)=
2k+1
k+k2
1+k2
.

∴s表示為直線l的斜率k的函數(shù)是s(k)=
2
1-k2
1+k2
  k∈(0
1
2
]
2k+1
k+k2
1+k2
 k∈(
1
2
2
2
).
點評:本題是直線與圓錐曲線的綜合問題,解題要熟練掌握雙曲線的性質(zhì)和解題技巧.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線c:
x2
2
-y2=1
,設直線l過點A(-3
2
,0)

(1)當直線l與雙曲線C的一條漸近線m平行時,求直線l的方程及l(fā)與m的距離;
(2)證明:當k>
2
2
時,在雙曲線C的右支上不存在點Q,使之到直線l的距離為
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:
x2
2
-
y2
b2
=1(b>0)
的左右焦點分別為F1,F(xiàn)2,P,M為C上任意點,F1PF2=
π
2
,S△PF1F2=1,N(
3
2
,1)
,則
6
3
|MF2|+|MN|
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:
x2
2
-y2 =1

(1)求雙曲線C的漸近線方程;
(2)已知點M的坐標為(0,1).設P是雙曲線C上的點,Q是點P關于原點的對稱點,記λ=
MP
MQ
.求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:上海 題型:解答題

已知雙曲線c:
x2
2
-y2=1
,設直線l過點A(-3
2
,0)

(1)當直線l與雙曲線C的一條漸近線m平行時,求直線l的方程及l(fā)與m的距離;
(2)證明:當k>
2
2
時,在雙曲線C的右支上不存在點Q,使之到直線l的距離為
6

查看答案和解析>>

同步練習冊答案