科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
10 |
3 |
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年上海華師大一附中高三第二學期開學檢測試題數(shù)學 題型:解答題
..(本題滿分16分)本題共有3個小題,第1小題滿分5分,第2小題滿分5分,第3小題滿分6分.
已知橢圓上有一個頂點到兩個焦點之間的距離分別為,。
(1)求橢圓的方程;
(2)如果直線與橢圓相交于,若,證明直線與直線的交點必在一條確定的雙曲線上;
(3)過點作直線(與軸不垂直)與橢圓交于兩點,與軸交于點,若,,證明:為定值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分18分)第(1)小題滿分4分,第(2)小題滿分6分,第(3)小題滿分8分。
圓錐曲線上任意兩點連成的線段稱為弦。若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦。已知橢圓C:。
(1)過橢圓C的右焦點作一條垂直于軸的垂軸弦,求的長度;
(2)若點是橢圓C上不與頂點重合的任意一點,是橢圓C的短軸,直線分別交軸于點和點(如右圖),求的值;
(3)在(2)的基礎(chǔ)上,把上述橢圓C一般化為,是任意一條垂直于軸的垂軸弦,其它條件不變,試探究是否為定值?(不需要證明);請你給出雙曲線中相類似的結(jié)論,并證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年上海市十三校高三(下)第二次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2010年上海市盧灣區(qū)高考模擬考試(理) 題型:解答題
本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分.
已知橢圓:(),其焦距為,若(),則稱橢圓為“黃金橢圓”.
(1)求證:在黃金橢圓:()中,、、成等比數(shù)列.
(2)黃金橢圓:()的右焦點為,為橢圓上的
任意一點.是否存在過點、的直線,使與軸的交點滿足?若存在,求直線的斜率;若不存在,請說明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓:()的左、右
焦點分別是、,以、、、為頂點的菱形的內(nèi)切圓過焦點、.
試寫出“黃金雙曲線”的定義;對于上述命題,在黃金雙曲線中寫出相關(guān)的真命題,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com