一個口袋內(nèi)裝有大小相同的6個小球,其中2個紅球,記為A1、A2,4個黑球,記為B1、B2、B3、B4,從中一次摸出2個球.
(Ⅰ)寫出所有的基本事件;
(Ⅱ)求摸出的兩個球顏色不同的概率.
分析:(Ⅰ)用列舉法根據(jù)題意用分類列舉的方法,列舉出所有可能的情況;
(Ⅱ)由(I),找出符合事件“摸出的兩個球顏色不同”的所有基本事件,查出其個數(shù),再由公式求出“摸出的兩個球顏色不同”這個事件的概率
解答:解:(Ⅰ)則從中一次摸出2個球,有如下基本事件:(A1,A2),(A1,B1),
( A1,B2),(A1,B3),( A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),
(B1,B2),(B1,B33),(B1,B4),(B2,B3),(B2,B4),(B3,B4
共有15個基本事件                                         …(5分)
(Ⅱ)從袋中的6個球中任取2個,所取的2球顏色不同的方法有:
(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)共有8種,
故所求事件的概率P=
8
15
…(10分)
點評:本題考查列舉法計算基本事件數(shù)及事件發(fā)生的概率,解題的關(guān)鍵是熟練運用分類列舉的方法及事件事件的性質(zhì)將所有的基本事件一一列舉出來,運用公式求出概率,列舉法求概率適合基本事件數(shù)不太多的概率求解問題,本題考查了分類的思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個口袋內(nèi)裝有大小相同的5 個球,3個白球,2個黑球,從中一次摸出兩個球.
求:(1)共有多少個基本事件;
    (2)摸出2個白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•河西區(qū)三模)一個口袋內(nèi)裝有大小相同的4個白球和3個紅球,某人一次從中摸出2個球.
(1)求摸出的2個球中恰有1個白球的概率及至少有1個紅球的概率;
(2)如果摸到的2個球都是紅球,那么就中大獎,在有放回的3次摸球中,求此人恰好兩次中大獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•河西區(qū)三模)一個口袋內(nèi)裝有大小相同的4個白球和3個紅球,某人一次從中摸出2個球.
(1)記摸出的2個球中紅球的個數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學(xué)期望;
(2)如果摸到的2個球都是紅球,那么就中大獎,在有放回的3次摸球中,求此人恰好兩次中大獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個口袋內(nèi)裝有大小相同的紅球和黑球共12個,已知從袋中任取2個球,得到2個都是黑球的概率為
122

(1)求這個口袋中原裝有紅球和黑球各幾個;
(2)從原袋中任取3個球,求取出的3個球中恰有1個黑球的概率及至少有1個黑球的概率.

查看答案和解析>>

同步練習(xí)冊答案