已知,設(shè)命題P: ;命題Q:函數(shù)f(x)=3x2+2mx+m+有兩個(gè)不同的零點(diǎn).求使命題“P或Q”為真命題的實(shí)數(shù)的取值范圍.
.
解析試題分析:對(duì)P:,即2≤m≤8 .
對(duì)Q:由已知得方程3x2+2mx+m+=0的判別式Δ>0.
要使“P或Q”為真命題,即求這兩個(gè)集合的并集.
試題解析:對(duì)P:,即2≤m≤8. 2分
對(duì)Q:由已知得f(x)=3x2+2mx+m+=0的判別式.
Δ=4m2-12(m+)=4m2-12m-16>0, 5分
得m<-1或m>4. 8分
所以,要使“P或Q”為真命題,即求這兩個(gè)集合的并集:
即m<-1或m≥2. 10分
實(shí)數(shù)m的取值范圍是. 12分
考點(diǎn):1、不等式的解法;2、函數(shù)的零點(diǎn);3、簡(jiǎn)單的邏輯連結(jié)詞.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)集合A=(―∞,―2]∪[3,+∞),關(guān)于x的不等式(x-2a)·(x+a)>0的解集為B(其中a<0).
(1)求集合B;
(2)設(shè)p:x∈A,q:x∈B,且Øp是Øq的充分不必要條件,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)p:函數(shù)的定義域?yàn)镽; q:不等式,對(duì)∈(-∞,-1)上恒成立,如果命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知∈R,設(shè)命題P:;命題Q:函數(shù)有兩個(gè)不同的零點(diǎn).求使“PQ”為假命題的實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知命題:函數(shù)在上單調(diào)遞增;命題:不等式的解集為,若為真,為假,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知命題方程在[-1,1]上有解;命題只有一個(gè)實(shí)數(shù)滿足不等式,若命題“p∨q”是假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知命題:方程無(wú)實(shí)根,命題:方程是焦點(diǎn)在軸上的橢圓.若與同時(shí)為假命題,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com