等比數(shù)列{an},an>0,q≠1,且a2、數(shù)學公式a3、a1成等差數(shù)列,則數(shù)學公式等于


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
B
分析:先根據(jù)a2a3、a1成等差數(shù)列,求出公比,再利用,即可求得結(jié)論.
解答:由題意,∵a2、a3、a1成等差數(shù)列
∴a3=a2+a1

∴q2=q+1

∵an>0,



故選B.
點評:本題重點考查等比數(shù)列的性質(zhì),考查等差數(shù)列的性質(zhì),解題的關(guān)鍵是求出等比數(shù)列的公比.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}中,公比q>1,且a1+a6=8,a3a4=12,則
a6
a11
=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn滿足:Sn=
a
a-1
(an-1)
(a為常數(shù),且a≠0,a≠1)
(1)若a=2,求數(shù)列{an}的通項公式
(2)設(shè)bn=
2Sn
an
+1
,若數(shù)列{bn}為等比數(shù)列,求a的值.
(3)在滿足條件(2)的情形下,設(shè)cn=
1
1+an
+
1
1-an+1
,數(shù)列{cn}前n項和為Tn,求證Tn>2n-
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}的前n項和為Sn
S3
S6
=
1
3
,則
S6
S12
=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,a3a4a5=3,a6a7a8=24,則a9a10a11=( 。
A、48B、72C、144D、192

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}的首項為a1,公比為q,給出下列四個有關(guān)數(shù)列{an}的命題:
p1:如果a1>0且q>1,那么數(shù)列{an}是遞增的等比數(shù)列;
p2:如果a1<0且q<1,那么數(shù)列{an}是遞減的等比數(shù)列;
p3:如果a1<0且0<q<1,那么數(shù)列{an}是遞增的等比數(shù)列;
p4:如果a1>0且0<q<1,那么數(shù)列{an}是遞減的等比數(shù)列.
其中為真命題的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習冊答案