若點O和點F分別為雙曲線 的中心和左焦點,點P為雙曲線右支上的任意一點,則的最小值為(  )
A.-6B.-2C.0D.10
D

試題分析:解:設(shè)P(x,y)(x≥2)由題意可得,F(xiàn)(-3,0),O(0,0),
 =(x,y),=(x+3,y),∴=x2+3x+y2=x2+3x+-5=+3x-5(x≥2),結(jié)合二次函數(shù)的性質(zhì)可知,當(dāng)x=2時,f(x)有最小值10,故選D
點評:本題以向量的數(shù)量積的坐標(biāo)表示為載體,主要考查了雙曲線的范圍及二次函數(shù)的性質(zhì)的綜合應(yīng)用
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

平面內(nèi)與兩定點連線的斜率之積等于非零常數(shù)的點的軌跡,加上 兩點,所成的曲線可以是圓,橢圓或雙曲線.
(Ⅰ)求曲線的方程,并討論的形狀與值的關(guān)系;
(Ⅱ)當(dāng)時,對應(yīng)的曲線為;對給定的,對應(yīng)的曲線為,若曲線的斜率為的切線與曲線相交于兩點,且為坐標(biāo)原點),求曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的中心在原點,其上、下頂點分別為,點在直線上,點到橢圓的左焦點的距離為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)是橢圓上異于的任意一點,點軸上的射影為,的中點,直線交直線于點,的中點,試探究:在橢圓上運動時,直線與圓:的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù))。
若以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(其中為常數(shù))
(1)當(dāng)時,曲線與曲線有兩個交點.求的值;
(2)若曲線與曲線只有一個公共點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓C的圓心是直線與x軸的交點,且圓C與直線x+y+3=0相切,則圓C的方程為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

我們把焦點相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對“相關(guān)曲線”.已知是一對相關(guān)曲線的焦點,是它們在第一象限的交點,當(dāng)時,這一對相關(guān)曲線中雙曲線的離心率是( 。
                                     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

中心在原點,焦點在軸上的雙曲線的離心率為,直線與雙曲線交于兩點,線段中點在第一象限,并且在拋物線上,且到拋物線焦點的距離為,則直線的斜率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在橢圓上找一點,使這一點到直線的距離的最小值

查看答案和解析>>

同步練習(xí)冊答案