【題目】已知拋物線的焦點(diǎn)為F,直線與x軸的交點(diǎn)為P,與拋物線的交點(diǎn)為Q,且.
求拋物線的方程;
如圖所示,過F的直線l與拋物線相交于兩點(diǎn),與圓相交于兩點(diǎn)兩點(diǎn)相鄰,過兩點(diǎn)分別作拋物線的切線,兩條切線相交于點(diǎn)M,求與的面積之積的最小值.
【答案】1;2.
【解析】【試題分析】(I)根據(jù)拋物線的定義以及,解得,故拋物線的方程為.(II)設(shè)出直線的方程,聯(lián)立直線方程和拋物線方程,寫出韋達(dá)定理,利用導(dǎo)數(shù)求得直線的方程,聯(lián)立兩個(gè)方程求得點(diǎn)的坐標(biāo).利用點(diǎn)到直線距離公式求得到的距離,由此求得兩個(gè)三角形面積乘積的表達(dá)式,進(jìn)而求得最小值.
【試題解析】
由題意可知,丨QF丨,
由,則,解得:,
拋物線;
設(shè)l:,
聯(lián)立,整理得:,
則,
由,求導(dǎo),
直線MA:,即,
同理求得MD:,
,解得:,則,
到l的距離,
與的面積之積丨AB丨丨CD丨,
丨AF丨丨DF丨,
,
,
當(dāng)且僅當(dāng)時(shí)取等號,
當(dāng)時(shí),與的面積之積的最小值1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是⊙O外一點(diǎn),PA是切線,A為切點(diǎn),割線PBC與⊙O相交于點(diǎn)B,C,PC=2PA,D為PC的中點(diǎn),AD的延長線交⊙O于點(diǎn)E,證明:
(1)BE=EC;
(2)ADDE=2PB2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某連鎖經(jīng)營公司所屬5個(gè)零售店某月的銷售額和利潤額資料如表所示:
商店名稱 | A | B | C | D | E |
銷售額(x)/千萬元 | 3 | 5 | 6 | 7 | 9 |
利潤額(y)/百萬元 | 2 | 3 | 3 | 4 | 5 |
(1)畫出銷售額和利潤額的散點(diǎn)圖.
(2)若銷售額和利潤額具有相關(guān)關(guān)系,用最小二乘法計(jì)算利潤額y對銷售額x的回歸直線方程=x+,其中=,=-.
(3)若獲得利潤是4.5百萬元時(shí)估計(jì)銷售額是多少(千萬元)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足條件b2+c2﹣a2=bc=1,cosBcosC=﹣ ,則△ABC的周長為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)某電子商務(wù)平臺的調(diào)查統(tǒng)計(jì)顯示,參與調(diào)查的1000位上網(wǎng)購物者的年齡情況如圖顯示.
(1)已知[30,40)、[40,50)、[50,60)三個(gè)年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,求a,b的值.
(2)該電子商務(wù)平臺將年齡在[30,50)之間的人群定義為高消費(fèi)人群,其他的年齡段定義為潛在消費(fèi)人群,為了鼓勵(lì)潛在消費(fèi)人群的消費(fèi),該平臺決定發(fā)放代金券,高消費(fèi)人群每人發(fā)放50元的代金券,潛在消費(fèi)人群每人發(fā)放100元的代金券,現(xiàn)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購者中抽取10人,并在這10人中隨機(jī)抽取3人進(jìn)行回訪,求此三人獲得代金券總和X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線:,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且點(diǎn)在直線上.
(1)求曲線的極坐標(biāo)方程和直線的直角坐標(biāo)方程;
(2)設(shè)向左平移個(gè)單位長度后得到,到的交點(diǎn)為, ,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD是菱 形,PA=PB,且側(cè)面PAB⊥平面ABCD,點(diǎn)E是AB的中點(diǎn).
(1)求證:PE⊥AD;
(2)若CA=CB,求證:平面PEC⊥平面PAB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市擬定2016年城市建設(shè)A,B,C三項(xiàng)重點(diǎn)工程,該市一大型城建公司準(zhǔn)備參加這三個(gè)工程的競標(biāo),假設(shè)這三個(gè)工程競標(biāo)成功與否相互獨(dú)立,該公司對A,B,C三項(xiàng)重點(diǎn)工程競標(biāo)成功的概率分別為a,b, (a>b),已知三項(xiàng)工程都競標(biāo)成功的概率為 ,至少有一項(xiàng)工程競標(biāo)成功的概率為 .
(1)求a與b的值;
(2)公司準(zhǔn)備對該公司參加A,B,C三個(gè)項(xiàng)目的競標(biāo)團(tuán)隊(duì)進(jìn)行獎(jiǎng)勵(lì),A項(xiàng)目競標(biāo)成功獎(jiǎng)勵(lì)2萬元,B項(xiàng)目競標(biāo)成功獎(jiǎng)勵(lì)4萬元,C項(xiàng)目競標(biāo)成功獎(jiǎng)勵(lì)6萬元,求競標(biāo)團(tuán)隊(duì)獲得獎(jiǎng)勵(lì)金額的分布列與數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com