【題目】用一個(gè)長(zhǎng)為,寬為的矩形鐵皮(如圖1)制作成一個(gè)直角圓形彎管(如圖3):先在矩形的中間畫(huà)一條曲線,并沿曲線剪開(kāi),將所得的兩部分分別卷成體積相等的斜截圓柱狀(如圖2),然后將其中一個(gè)適當(dāng)翻轉(zhuǎn)拼接成直角圓形彎管(如圖3)(不計(jì)拼接損耗部分),并使得直角圓形彎管的體積最大;

1)求直角圓形彎管(圖3)的體積;

2)求斜截面橢圓的焦距;

3)在相應(yīng)的圖1中建立適當(dāng)?shù)淖鴺?biāo)系,使所畫(huà)的曲線的方程為,求出方程并畫(huà)出大致圖像;

【答案】1; 22 3)見(jiàn)解析;

【解析】

1)直角圓形彎管的體積即為圓柱的體積,要使直角圓形彎管的體積最大,可取圓柱的高為,半徑為1,計(jì)算可得所求體積;

2)求得,以矩形的下邊的中點(diǎn)為,下邊所在直線為軸,建立所示的直角坐標(biāo)系,設(shè)出曲線方程,應(yīng)用周期性和對(duì)稱性,求得方程,再由橢圓的長(zhǎng)軸和短軸的關(guān)系,可得焦距;

3)由(2)可得方程,畫(huà)出方程表示的曲線.

解:(1)直角圓形彎管的體積即為圓柱的體積,

要使直角圓形彎管的體積最大,

可取圓柱的高為,

那么圓柱的底面半徑

即有直角圓形彎管(圖的體積為;

2)由圖2可得橢圓短軸長(zhǎng)為,即

可以矩形的下邊的中點(diǎn)為,

下邊所在直線為軸,建立如圖所示的直角坐標(biāo)系,

由周期為,可得

再由時(shí),時(shí),

,可得

所求方程為,,

可得

解得,

可得橢圓的焦距為2;

3)由(2)可得,方程為,

圖象如右圖.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)求函數(shù)的極值;

(2)對(duì),不等式都成立,求整數(shù)k的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了配合今年上海迪斯尼樂(lè)園工作,某單位設(shè)計(jì)了統(tǒng)計(jì)人數(shù)的數(shù)學(xué)模型,以表示第個(gè)時(shí)刻進(jìn)入園區(qū)的人數(shù);以表示第個(gè)時(shí)刻離開(kāi)園區(qū)的人數(shù).設(shè)定以15分鐘為一個(gè)計(jì)算單位,上午9點(diǎn)15分作為第1個(gè)計(jì)算人數(shù)單位,即9點(diǎn)30分作為第2個(gè)計(jì)算單位,即;依次類推,把一天內(nèi)從上午9點(diǎn)到晚上8點(diǎn)15分分成45個(gè)計(jì)算單位(最后結(jié)果四舍五入,精確到整數(shù)).

1)試計(jì)算當(dāng)天14點(diǎn)至15點(diǎn)這1小時(shí)內(nèi)進(jìn)入園區(qū)的游客人數(shù)、離開(kāi)園區(qū)的游客人數(shù)各為多少?

2)從13點(diǎn)45分(即)開(kāi)始,有游客離開(kāi)園區(qū),請(qǐng)你求出這之后的園區(qū)內(nèi)游客總?cè)藬?shù)最多的時(shí)刻,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)

1)討論在其定義域上的單調(diào)性;

2)設(shè)m,n分別為的極大值和極小值,若S=m-n,求S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C1y=cos xC2y=sin (2x+),則下面結(jié)論正確的是( )

A. C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2

B. C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2

C. C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2

D. C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中,e是自然對(duì)數(shù)的底數(shù).

1)若上存在兩個(gè)極值點(diǎn),求a的取值范圍;

2)當(dāng),設(shè),若上存在兩個(gè)極值點(diǎn),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面上的線段及點(diǎn),任取上的一點(diǎn),線段長(zhǎng)度的最小值稱為點(diǎn)到線段的距離,記為,設(shè),,,,若滿足,則關(guān)于的函數(shù)解析式為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的準(zhǔn)線經(jīng)過(guò)點(diǎn).

1)求拋物線的方程;

2)設(shè)是原點(diǎn),直線恒過(guò)定點(diǎn),且與拋物線交于兩點(diǎn),直線與直線,分別交于點(diǎn).請(qǐng)問(wèn):是否存在以為直徑的圓經(jīng)過(guò)軸上的兩個(gè)定點(diǎn)?若存在,求出兩個(gè)定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸.已知點(diǎn)P的直角坐標(biāo)為,點(diǎn)M的極坐標(biāo)為,若直線l過(guò)點(diǎn)P,且傾斜角為,圓CM點(diǎn)為圓心,4為半徑.

求直線l和圓C的極坐標(biāo)方程;

直線lxy軸分別交于A,B兩點(diǎn),Q為圓C上一動(dòng)點(diǎn),求面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案