如圖,有一條長度為1的線段EF,其端點E、F分別在邊長為3的正方形ABCD的四邊上滑動,當(dāng)F沿正方形的四邊滑動一周時,EF的中點M所形成的軌跡長度最接近于(  )

A.8                                    B.11

C.12                                   D.10

 

【答案】

B

【解析】

試題分析:當(dāng)線段EF的兩端點分別在兩邊時,M點的軌跡是以A為圓心,半徑為的圓弧,當(dāng)線段EF的兩端點在某一條邊上時,M的軌跡是長度為2的線段,所以軌跡長度為

考點:動點的軌跡

點評:求解本題首先分析清楚動點在不同的位置的軌跡變化情況,找到對應(yīng)的曲線圖形再求其長度

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某城市有一條從正西方AO通過市中心O后向東北O(jiān)B,現(xiàn)要修一條地鐵L,在OA上設(shè)一站,在OB上設(shè)一站,地鐵在AB部分為直線段,現(xiàn)要求市中心O與AB的距離為10km,設(shè)地鐵在AB部分的總長度為ykm.
(1)按下列要求建立關(guān)系式:
(i)設(shè)∠OAB=α,將y表示為α的函數(shù);
(ii)設(shè)OA=m,OB=n,用m,n表示y;
(2)把A,B兩站分別設(shè)在公路上離中心O多遠處,才能使AB最短,并求出最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省福州市高三質(zhì)量檢測理科數(shù)學(xué) 題型:解答題

(本小題滿分1 3分)

如圖①,一條寬為l km的兩平行河岸有村莊A和供電站C,村莊B與A、C的直線距離都是2km,BC與河岸垂直,垂足為D.現(xiàn)要修建電纜,從供電站C向村莊A、B供電.修建地下電纜、水下電纜的費用分別是2萬元/km、4萬元/km.

    (Ⅰ)已知村莊A與B原來鋪設(shè)有舊電纜仰,需要改造,舊電纜的改造費用是0.5萬元/km.現(xiàn)

決定利用舊電纜修建供電線路,并要求水下電纜長度最短,試求該方案總施工費用的最小值.

(Ⅱ)如圖②,點E在線段AD上,且鋪設(shè)電纜的線路為CE、EA、EB.若∠DCE=θ (0≤θ≤),試用θ表示出總施工費用y(萬元)的解析式,并求y的最小值.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖,有一條長度為1的線段EF,其端點E、F分別在邊長為3的正方形ABCD的四邊上滑動,當(dāng)F沿正方形的四邊滑動一周時,EF的中點M所形成的軌跡長度最接近于(  )


  1. A.
    8
  2. B.
    11
  3. C.
    12
  4. D.
    10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省常州中學(xué)高三最后沖刺綜合練習(xí)數(shù)學(xué)試卷6(文科)(解析版) 題型:解答題

如圖,某城市有一條從正西方AO通過市中心O后向東北O(jiān)B,現(xiàn)要修一條地鐵L,在OA上設(shè)一站,在OB上設(shè)一站,地鐵在AB部分為直線段,現(xiàn)要求市中心O與AB的距離為10km,設(shè)地鐵在AB部分的總長度為ykm.
(1)按下列要求建立關(guān)系式:
(i)設(shè)∠OAB=α,將y表示為α的函數(shù);
(ii)設(shè)OA=m,OB=n,用m,n表示y;
(2)把A,B兩站分別設(shè)在公路上離中心O多遠處,才能使AB最短,并求出最短距離.

查看答案和解析>>

同步練習(xí)冊答案