【題目】有甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表.已知從全部210人中隨機(jī)抽取1人為優(yōu)秀的概率為.

(1)請(qǐng)完成上面的2×2列聯(lián)表,并判斷若按99%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)”;

(2)從全部210人中有放回地抽取3次,每次抽取1人,記被抽取的3人中的優(yōu)秀人數(shù)為ξ,若每次抽取的結(jié)果是相互獨(dú)立的,求ξ的分布列及數(shù)學(xué)期望E(ξ).

P(K2k0)

0.05

0.01

k0

3.841

6.635

附:

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.

【解析】試題分析:(1)優(yōu)秀人數(shù)為 ,進(jìn)而求得其它數(shù)據(jù),從而求得 ,故可以判定有關(guān);(2)易得 ,計(jì)算得分布列及方差.試題解析:

(1)

k≈12.2,所以按照99%的可靠性要求,能夠判斷成績(jī)與班級(jí)有關(guān).

(2)ξB,且P(ξk)Ck·3k(k0,1,2,3),ξ的分布列為

E(ξ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為2的正方形,,分別為,的中點(diǎn),平面平面,且.

(1)求證:平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),g(x)f(x)mxm(1,1]內(nèi)有且僅有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓M的方程為x2(y2)21,直線(xiàn)l的方程為x2y0,點(diǎn)P在直線(xiàn)l上,過(guò)點(diǎn)P作圓M的切線(xiàn)PAPB,切點(diǎn)為AB.

()APB60°,試求點(diǎn)P的坐標(biāo);

()若P點(diǎn)的坐標(biāo)為(2,1),過(guò)P作直線(xiàn)與圓M交于C,D兩點(diǎn),當(dāng)CD=時(shí),求直線(xiàn)CD的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) ,且函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng)。

(1)求函數(shù)在區(qū)間上最大值;

(2)設(shè),不等式上恒成立,求實(shí)數(shù)的取值范圍;

(3)設(shè)有唯一零點(diǎn),求實(shí)數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為常數(shù),

(1)若函數(shù)為奇函數(shù),求的值;

(2)若函數(shù)上有意義,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2-2|x|-1,-3≤x≤3.

(1)證明:f(x)是偶函數(shù);

(2)指出函數(shù)f(x)的單調(diào)區(qū)間;

(3)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), 是自然對(duì)數(shù)的底數(shù)).

1)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在各項(xiàng)都不相等的等差數(shù)列{an}中,a1,a2是關(guān)于x的方程x2-7a4x+18a3=0的兩個(gè)實(shí)根.

(1) 試判斷-22是否在數(shù)列{an}中;

(2) 求數(shù)列{an}的前n項(xiàng)和Sn的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案