【題目】已知數(shù)列是遞增數(shù)列,且對,都有,則實數(shù)的取值范圍是
A. B. C. D.
【答案】D
【解析】
由{an}是遞增數(shù)列,得到an+1>an,再由“an=n2+λn恒成立”轉(zhuǎn)化為“λ>﹣2n﹣1對于n∈N*恒成立”求解.
∵{an}是遞增數(shù)列,
∴an+1>an,
∵an=n2+λn恒成立
即(n+1)2+λ(n+1)>n2+λn,
∴λ>﹣2n﹣1對于n∈N*恒成立.
而﹣2n﹣1在n=1時取得最大值﹣3,
∴λ>﹣3,
故選:D.
【點睛】
本題主要考查由數(shù)列的單調(diào)性來構(gòu)造不等式,解決恒成立問題.研究數(shù)列單調(diào)性的方法有:比較相鄰兩項間的關(guān)系,將an+1和an做差與0比較,即可得到數(shù)列的單調(diào)性;研究數(shù)列通項即數(shù)列表達式的單調(diào)性.
【題型】單選題
【結(jié)束】
13
【題目】已知數(shù)列{an}滿足a1=1,且an=an-1+2n1 (n≥2 ),則a20=________.
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的銳角三角形空地中, 欲建一個面積不小于300m2的內(nèi)接矩形花園(陰影部分), 則其邊長x(單位m)的取值范圍是 ( )
(A) [15,20](B) [12,25] (C) [10,30](D) [20,30]
【答案】C
【解析】如圖△ADE∽△ABC,設(shè)矩形的另一邊長為y,則,所以,又,所以,即,解得.
【考點定位】本題考查平面幾何知識和一元二次不等式的解法,對考生的閱讀理解能力、分析問題和解決問題的能力以及探究創(chuàng)新能力都有一定的要求.屬于難題.
【題型】單選題
【結(jié)束】
10
【題目】設(shè)等差數(shù)列{an}的前n項和為Sn,若Sm-1=-2,Sm=0,Sm+1=3,則m=( )
A. 5 B. 4 C. 3 D. 6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 且(Sn﹣1)2=anSn(n∈N*).
(1)求S1 , S2 , S3的值;
(2)求出Sn及數(shù)列{an}的通項公式;
(3)設(shè)bn=(﹣1)n﹣1(n+1)2anan+1(n∈N*),求數(shù)列{bn}的前n項和為Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式,并寫出f(x)的單調(diào)減區(qū)間;
(2)△ABC的內(nèi)角分別是A,B,C,若f(A)=1,cosB= ,求sinC的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),若方程f(x+1)=|x2+2x﹣3|的實根分別為x1 , x2 , …,xn , 則x1+x2+…+xn=( )
A.n
B.﹣n
C.﹣2n
D.﹣3n
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】動直線2ax+(a+c)y+2c=0(a∈R,c∈R)過定點(m,n),x1+x2+m+n=15 且x1>x2 , 則 的最小值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com