(本題滿分13分)已知是定義在上的奇函數(shù),當(dāng)時,
(1)求的解析式;
(2)是否存在負(fù)實(shí)數(shù),使得當(dāng)的最小值是4?如果存在,求出的值;如果不存在,請說明理由。
(3)對如果函數(shù)的圖像在函數(shù)的圖像的下方,則稱函數(shù)在D上被函數(shù)覆蓋。求證:若時,函數(shù)在區(qū)間上被函數(shù)覆蓋。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù).
(1)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個數(shù);
(2)若函數(shù)在處取得極值,對,恒成立,
求實(shí)數(shù)的取值范圍;
(3)當(dāng)時,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知實(shí)數(shù)a滿足1<a≤2,設(shè)函數(shù)f (x)=x3-x2+ax.
(Ⅰ) 當(dāng)a=2時,求f (x)的極小值;
(Ⅱ) 若函數(shù)g(x)=4x3+3bx2-6(b+2)x (b∈R) 的極小值點(diǎn)與f (x)的極小值點(diǎn)相同,
求證:g(x)的極大值小于等于10.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)已知函數(shù)
(1)若函數(shù)在上為增函數(shù),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時,求在上的最大值和最小值;
(3)當(dāng)時,求證對任意大于1的正整數(shù),恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時,如果函數(shù)僅有一個零點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時,試比較與1的大。
(Ⅲ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知函數(shù)
(Ⅰ)求的最小值;
(Ⅱ)若在上為單調(diào)增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:….
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分)已知函數(shù)()
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時,設(shè),若存在,,使,
求實(shí)數(shù)的取值范圍。為自然對數(shù)的底數(shù),
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個數(shù);
(2)若函數(shù)在處取得極值,對,恒成立,
求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分) 設(shè)函數(shù)f (x)=ln x+在(0,) 內(nèi)有極值.
(Ⅰ) 求實(shí)數(shù)a的取值范圍;
(Ⅱ) 若x1∈(0,1),x2∈(1,+).求證:f (x2)-f (x1)>e+2-.
注:e是自然對數(shù)的底數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com