【題目】設(shè)集合S={x|x>﹣2},T={x|x2+3x﹣4≤0},則(RS)∪T=(
A.(﹣2,1]
B.(﹣∞,﹣4]
C.(﹣∞,1]
D.[1,+∞)

【答案】C
【解析】解:∵集合S={x|x>﹣2},
RS={x|x≤﹣2},
T={x|x2+3x﹣4≤0}={x|﹣4≤x≤1},
故(RS)∪T={x|x≤1}
故選C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用集合的全集運(yùn)算和交、并、補(bǔ)集的混合運(yùn)算的相關(guān)知識(shí)可以得到問題的答案,需要掌握一般地,如果一個(gè)集合含有我們所研究問題中所涉及的所有元素,那么就稱這個(gè)集合為全集,通常記作U;求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若曲線y=ex上點(diǎn)P的切線平行于直線2x+y+1=0,則點(diǎn)P的坐標(biāo)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)為奇函數(shù),且在(0,+∞)上是遞增的,若f(﹣3)=0,則xf(x)>0的解集是(
A.{x|﹣3<x<0或x>3}
B.{ x|x<﹣3或0<x<3}
C.{ x|x<﹣3或x>3}
D.{ x|﹣3<x<0或0<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“x<0”是“l(fā)n(x+1)<0”的(
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|1<x<2},B={x|x<a},若AB,則a的范圍是(
A.a≥2
B.a≥1
C.a≤1
D.a≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣4x,那么,不等式f(x+2)<5的解集是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列(an)中,an=2n﹣1,若一個(gè)7行12列的矩陣的第i行第j列的元素cij=aiaj+ai+aj(i=1,2,…,7;j=1,2,…,12),則該矩陣元素能取到的不同數(shù)值的個(gè)數(shù)為(
A.18
B.28
C.48
D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組對(duì)象中:
①高一個(gè)子高的學(xué)生;
②《高中數(shù)學(xué)》(必修)中的所有難題;
③所有偶數(shù);
④平面上到定點(diǎn)O的距離等于5的點(diǎn)的全體;
⑤全體著名的數(shù)學(xué)家.
其中能構(gòu)成集合的有( 。
A.2組
B.3組
C.4組
D.5組

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1和l2的夾角的平分線為y=x,如果l1的方程是x+2y+3=0,那么l2的方程為( 。
A.x﹣2y+3=0
B.2x+y+3=0
C.2x﹣y+3=0
D.x+2y﹣3=0

查看答案和解析>>

同步練習(xí)冊(cè)答案