【題目】已知O為△ABC內一點,且 , ,若B,O,D三點共線,則t的值為( )
A.
B.
C.
D.
【答案】B
【解析】解:以OB,OC為鄰邊作平行四邊形OBFC,連接OF與 BC相交于點E,E為BC的中點. ∵ ,∴ =2 =2 ,
∴點O是直線AE的中點.
∵ ,B,O,D三點共線,
∴點D是BO與AC的交點.
過點O作OM∥BC交AC于點M,則點M為AC的中點.
則OM= EC= BC, = ,
∴DM= MC,
∴AD= AM= AC,
∴t= .
故選:B.
以OB,OC為鄰邊作平行四邊形OBFC,連接OF與 BC相交于點E,E為BC的中點.由 ,可得 =2 =2 ,點O是直線AE的中點.根據(jù) ,B,O,D三點共線,可得點D是BO與AC的交點.過點O作OM∥BC交AC于點M,則點M為AC的中點.即可得出.
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為菱形,∠ABC=60°,E是BC中點,M是PD上的中點,F(xiàn)是PC上的動點. (Ⅰ)求證:平面AEF⊥平面PAD
(Ⅱ)直線EM與平面PAD所成角的正切值為 ,當F是PC中點時,求二面角C﹣AF﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已成橢圓 的離心率為 .其右頂點與上頂點的距離為 ,過點 的直線 與橢圓 相交于 兩點.
(1)求橢圓 的方程;
(2)設 是 中點,且 點的坐標為 ,當 時,求直線 的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)當a=0時,求f(x)在點(1,f(1))處的切線方程;
(2)是否存在實數(shù)a,當0<x≤2時,函數(shù)f(x)圖象上的點都在 所表示的平面區(qū)域(含邊界)?若存在,求出a的值組成的集合;否則說明理由;
(3)若f(x)有兩個不同的極值點m,n(m>n),求過兩點M(m,f(m)),N(n,f(n))的直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場在店慶日進行抽獎促銷活動,當日在該店消費的顧客可參加抽獎.抽獎箱中有大小完全相同的4個小球,分別標有字“生”“意”“興”“隆”.顧客從中任意取出1個球,記下上面的字后放回箱中,再從中任取1個球,重復以上操作,最多取4次,并規(guī)定若取出“隆”字球,則停止取球.獲獎規(guī)則如下:依次取到標有“生”“意”“興”“隆”字的球為一等獎;不分順序取到標有“生”“意”“興”“隆”字的球,為二等獎;取到的4個球中有標有“生”“意”“興”三個字的球為三等獎. (Ⅰ)求分別獲得一、二、三等獎的概率;
(Ⅱ)設摸球次數(shù)為ξ,求ξ的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l1的方程為y= x,曲線C的參數(shù)方程為 (φ是參數(shù),0≤φ≤π).以O為極點,x軸的非負半軸為極軸建立極坐標系.
(1)分別寫出直線l1與曲線C的極坐標方程;
(2)若直線 =0,直線l1與曲線C的交點為A,直線l1與l2的交點為B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校學生小王在學習完解三角形的相關知識后,用所學知識測量高為AB 的煙囪的高度.先取與煙囪底部B在同一水平面內的兩個觀測點C,D,測得∠BDC=60°,∠BCD=75°,CD=40米,并在點C處的正上方E處觀測頂部 A的仰角為30°,且CE=1米,則煙囪高 AB=米.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“a≤0”是“函數(shù)f(x)=|(ax﹣1)x|在區(qū)間(0,+∞)內單調遞增”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com