12.如果a>b>0,那么下列不等式成立的是( 。
A.-a>-bB.a+c>b+cC.$\frac{1}{a}>\frac{1}$D.(-a)2>(-b)2

分析 根據(jù)不等式的性質(zhì)求出-a<-b<0,結(jié)合二次函數(shù)的性質(zhì)判斷即可.

解答 解:∵a>b>0,∴-a<-b<0,
根據(jù)函數(shù)y=x2的單調(diào)性得:(-a)2>(-b)2成立,
故選:D.

點(diǎn)評(píng) 本題考查了不等式的性質(zhì),考查函數(shù)的單調(diào)性問(wèn)題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)y=log${\;}_{\frac{1}{2}}}$(2x2-3x+1)的單調(diào)增區(qū)間為(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列命題中,正確的是( 。
A.命題“?x∈R,x2-x≤0”的否定是“$?{x_0}∈R,x_0^2-{x_0}≥0$”.
B.命題“p∧q為真”是命題“p∨q為真”的必要不充分條件.
C.“若am2≤bm2,則a≤b”的否命題為真.
D.若實(shí)數(shù)x,y∈[-1,1],則滿足x2+y2≥1的概率為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$(x∈R)
(1)當(dāng)x∈[-$\frac{π}{12}$,$\frac{5π}{12}$]時(shí),求函數(shù)f(x)取得最大值和最小值時(shí)x的值;
(2)設(shè)銳角△ABC的內(nèi)角A、B、C的對(duì)應(yīng)邊分別是a,b,c,且a=1,c∈N*,若向量$\overrightarrow{{n}_{1}}$=(1,sinA)與向量$\overrightarrow{{n}_{2}}$=(2,sinB)平行,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=2cos2$\frac{x}{2}$-2$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$-1,x∈R.
(I)求使得取f(x)得最大值的x的取值集合;
(II)若g(x)=x+f(x),求g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{a{e}^{x}+blnx}{x}$(a,b∈R且a≠0).
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸垂直,且f(x)有極大值,求實(shí)數(shù)a的取值范圍;
(2)若a=b=1,試判斷f(x)在(0,+∞)上的單調(diào)性,并加以證明.(提示:e${\;}^{\frac{3}{4}}$>$\frac{16}{9}$,e${\;}^{\frac{2}{3}}$<$\frac{9}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+cos2x.
(1)試求f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,若f($\frac{A}{2}$)=1,a=2,試求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=sin2x+$\sqrt{3}$(1-2sin2x).
(Ⅰ)求f(x)的單調(diào)減區(qū)間;
(Ⅱ)當(dāng)x∈[-$\frac{π}{6}$,$\frac{π}{6}$]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)f(x)=(1-cosx)sinx在[-π,π]的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案