【題目】

已知是遞增數(shù)列,其前項(xiàng)和為,且

)求數(shù)列的通項(xiàng)

)是否存在使得成立?若存在,寫出一組符合條件的的值;若不存在,請(qǐng)說(shuō)明理由;

)設(shè),若對(duì)于任意的,不等式

恒成立,求正整數(shù)的最大值.

【答案】12)不存在(38

【解析】

,得,解得,或

由于,所以

因?yàn)?/span>,所以.

,

整理,得,即

因?yàn)?/span>是遞增數(shù)列,且,故,因此

則數(shù)列是以2為首項(xiàng),為公差的等差數(shù)列.

所以.………………………………………………5

)滿足條件的正整數(shù)不存在,證明如下:

假設(shè)存在,使得,

整理,得

顯然,左邊為整數(shù),所以式不成立.

故滿足條件的正整數(shù)不存在. ……………………8

,

不等式可轉(zhuǎn)化為

設(shè)

.

所以,即當(dāng)增大時(shí),也增大.

要使不等式對(duì)于任意的恒成立,只需即可.

因?yàn)?/span>,所以.

.

所以,正整數(shù)的最大值為8 ………………………………………14

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lg(2+x)+lg(2﹣x).

(1)求函數(shù)f(x)的定義域并判斷函數(shù)f(x)的奇偶性;

(2)記函數(shù)g(x)= +3x,求函數(shù)g(x)的值域;

(3)若不等式 f(x)m有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標(biāo)方程為

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線軸交于點(diǎn),與曲線交于點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知aR,命題p:“x[1,2],x2﹣a≥0”,命題q:“xR,x2+2ax+2﹣a=0”.

(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;

(2)若命題“pq”為真命題,命題“pq”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

)若函數(shù)上遞減, 求實(shí)數(shù)的取值范圍;

)當(dāng)時(shí),求的最小值的最大值;

)設(shè),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過(guò)點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。

(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:

(2)若成等比數(shù)列,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間

(Ⅱ)設(shè),若對(duì)任意均存在,使得,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將余弦函數(shù)的圖象向右平移個(gè)單位后,再保持圖象上點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的一半,得到函數(shù)的圖象,下列關(guān)于的敘述正確的是( )

A. 最大值為,且關(guān)于對(duì)稱

B. 周期為,關(guān)于直線對(duì)稱

C. 上單調(diào)遞增,且為奇函數(shù)

D. 上單調(diào)遞減,且為偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),為實(shí)數(shù))有極值,且在處的切線與直線平行.

1)求實(shí)數(shù)的取值范圍;

2)是否存在實(shí)數(shù),使得函數(shù)的極小值為1,若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由;

3)設(shè)函數(shù) 試證明:上恒成立并證明

查看答案和解析>>

同步練習(xí)冊(cè)答案