設(shè)橢圓C:+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,P是C上的點(diǎn),PF2⊥F1F2,∠PF1F2=30°,則C的離心率為(  )
A.B.C.D.
D
Rt△PF1F2中,|F1F2|=2c(c為半焦距),
因?yàn)椤螾F1F2=30°,
所以|PF2|=,|PF1|=,
由橢圓的定義知2a=|PF1|+|PF2|=,
所以e==.
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓C:  +=1(a>b>0)的離心率e=,a+b=3.

(1)求橢圓C的方程;
(2)如圖,A,B,D是橢圓C的頂點(diǎn),P是橢圓C上除頂點(diǎn)外的任意一點(diǎn),直線DP交x軸于點(diǎn)N,直線AD交BP于點(diǎn)M,設(shè)BP的斜率為k,MN的斜率為m.證明2m-k為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在y軸上,若其離心率為,焦距為8,則該橢圓的方程是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓的中心為原點(diǎn)O,長軸在x軸上,離心率e=,過左焦點(diǎn)F1作x軸的垂線交橢圓于A、A′兩點(diǎn),=4.

(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)取平行于y軸的直線與橢圓相交于不同的兩點(diǎn)P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點(diǎn)均在圓Q外.求△PP′Q的面積S的最大值,并寫出對(duì)應(yīng)的圓Q的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義:關(guān)于x的不等式|x-A|<B的解集叫A的B鄰域.
已知a+b-2的a+b鄰域?yàn)閰^(qū)間(-2,8),其中a、b分別為橢圓+=1的長半軸長和短半軸長,若此橢圓的一焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,則橢圓的方程為(  )
A.+=1B.+=1
C.+=1D.+=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓+=1的焦點(diǎn)為F1、F2,點(diǎn)P在橢圓上.若|PF1|=4,則|PF2|=   ,∠F1PF2的大小為    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓上有個(gè)不同的點(diǎn)為右焦點(diǎn),組成公差的等差數(shù)列,則的最大值為( )
A.199B.200 C.99D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0)的一個(gè)頂點(diǎn)A(2,0),離心率為,直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的方程.
(2)當(dāng)△AMN的面積為時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓C:=1,直線l:y=mx+1,若對(duì)任意的m∈R,直線l與橢圓C恒有公共點(diǎn),則實(shí)數(shù)b的取值范圍是(  )
A.[1,4)B.[1,+∞)C.[1,4)∪(4,+∞)D.(4,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案