調(diào)查某校高三年級(jí)500名學(xué)生的肥胖情況,得到下表:
偏瘦正常偏胖
女生(人)x120y
男生(人)50180z
已知從這批學(xué)生中隨機(jī)抽取1名學(xué)生,抽到偏瘦女生的概率為0.1.
(1)求x的值;
(2)若用分層抽樣的方法,從這批學(xué)生中隨機(jī)抽取50名,問(wèn)應(yīng)在偏胖學(xué)生中抽多少名?
(3)已知y≥46,z≥46,求偏胖學(xué)生中男生人數(shù)大于女生人數(shù)的概率.
考點(diǎn):古典概型及其概率計(jì)算公式,分層抽樣方法
專(zhuān)題:概率與統(tǒng)計(jì)
分析:(1)由題意可得
x
500
=0.1,解方程可得;(2)可得偏胖的學(xué)生共y+z=100,由分層抽樣的特點(diǎn)可得;(3)可得y+z=100,y≥46,z≥46,列舉可得總的情況共9種,而符合條件的有4種,由概率公式可得.
解答: 解:(1)由題意可得
x
500
=0.1,解得x=50;
(2)可得偏胖的學(xué)生共y+z=500-(50+120+50+180)=100,
∴由分層抽樣可知偏胖的學(xué)生應(yīng)抽取100×
50
500
=10人;
(3)∵y+z=100,y≥46,z≥46,
∴偏胖學(xué)生中男、女生人數(shù)為(46,54),(47,53),(48,52),
(49,51),(50,50),(51,49),(52,48),(53,47),(54,46)共9種情形,
其中滿(mǎn)足男生人數(shù)大于女生人數(shù)的為(51,49),(52,48),(53,47),(54,46)共4種,
∴所求概率P=
4
9
點(diǎn)評(píng):本題考查古典概型及其概率公式,涉及分層抽樣的性質(zhì),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線(xiàn)a、b是相互不垂直的異面直線(xiàn),平面α、β滿(mǎn)足a?α,b?β,且α⊥β,則這樣的平面α、β( 。
A、只有一對(duì)B、有兩對(duì)
C、有無(wú)數(shù)對(duì)D、不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=mx3-3x+4,m∈R.
(Ⅰ)已知f(x)在區(qū)間(m,+∞)上遞增,求實(shí)數(shù)m的取值范圍;
(Ⅱ)存在實(shí)數(shù)m,使得當(dāng)x∈[0,2]時(shí),2≤f(x)≤6恒成立,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明當(dāng)a∈(0,+∞)時(shí),2a-aln4a2≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐S-ABCD中,SA=AB=2,SB=SD=2
2
,底面ABCD是菱形,
且∠ABC=60°,E為CD的中點(diǎn).
(1)證明:CD⊥平面SAE;
(2)側(cè)棱SB上是否存在點(diǎn)F,使得CF∥平面SAE?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2ax+3,x∈(-4,4).
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的最大值和最小值;
(2)求實(shí)數(shù)a的取值范圍.使得y=f(x)在區(qū)間(-4,4)上是單調(diào)函數(shù);
(3)若函數(shù)y=f(x)在(-4,4)上有兩個(gè)零點(diǎn),求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足a1=
4
3
,(4n-1)an=3•4n-1Sn
(Ⅰ)求數(shù)列{Sn}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
n
3an
,若Tn為數(shù)列{bn}的前n項(xiàng)和,求
lim
n→∞
Tn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的前n項(xiàng)和是Sn,滿(mǎn)足條件a6是a2,S4的等差中項(xiàng),且數(shù)列首項(xiàng)為1.
(1)求等差數(shù)列{an}的公差d;
(2)設(shè)bn=
1
S
 
n
,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,是否存在實(shí)數(shù)λ,使得Tn<λan+1對(duì)一切n∈N*都成立?若存在,求出λ的取值范圍,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
(1+tanx)•cos2x
cos2x+sin2x
的定義域?yàn)椋?,
π
4
),則函數(shù)f(x)的值域?yàn)?div id="fz1dji9" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊(cè)答案