(本小題滿分12分)
已知函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求函數(shù)的解析式;
(2)過點(diǎn)能作幾條直線與曲線相切?說明理由.

(1)(2)三條切線

解析試題分析:(1),由題知…………………………………………………(1分)

…………………………………………………………………………(5分)
(2)設(shè)過點(diǎn)(2,2)的直線與曲線相切于點(diǎn),則切線方程為:

……………………………………………………………………(7分)
由切線過點(diǎn)(2,2)得:
過點(diǎn)(2,2)可作曲線的切線條數(shù)就是方程的實(shí)根個(gè)數(shù)……(9分)
,則

當(dāng)t變化時(shí),、的變化如下表

t

0
(0,2)
2


+
0
-
0
+


極大值2

極小值-2

知,故有三個(gè)不同實(shí)根可作三條切線………………(12分)
考點(diǎn):函數(shù)導(dǎo)數(shù)的幾何意義及導(dǎo)數(shù)求最值
點(diǎn)評:導(dǎo)數(shù)的幾何意義:函數(shù)在某一點(diǎn)處的導(dǎo)數(shù)值等于該點(diǎn)處的切線斜率,第二問求切線條數(shù)準(zhǔn)化為求切點(diǎn)個(gè)數(shù),進(jìn)而化為求方程的根,此時(shí)可與函數(shù)最值結(jié)合,此題出的比較巧妙

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)
(1)當(dāng)a=1時(shí),求的單調(diào)區(qū)間。
(2)若上的最大值為,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題共12分)
已知函數(shù),
(1)若對于定義域內(nèi)的恒成立,求實(shí)數(shù)的取值范圍;
(2)設(shè)有兩個(gè)極值點(diǎn),,求證:;
(3)設(shè)若對任意的,總存在,使不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù).
(Ⅰ)函數(shù)在區(qū)間上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(Ⅱ)當(dāng)時(shí),恒成立,求整數(shù)的最大值;
(Ⅲ)試證明:)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)
已知奇函數(shù)對任意,總有,且當(dāng)時(shí),.
(1)求證:上的減函數(shù).
(2)求上的最大值和最小值.
(3)若,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù):.
(1) 當(dāng)時(shí)①求的單調(diào)區(qū)間;
②設(shè),若對任意,存在,使,求實(shí)數(shù)取值范圍.
(2) 當(dāng)時(shí),恒有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(Ⅰ)若上為單調(diào)函數(shù),求m的取值范圍;
(Ⅱ)設(shè),若在上至少存在一個(gè),使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)時(shí)都取得極值
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對,不等式恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題14分)已知函數(shù),設(shè)。
(Ⅰ)求F(x)的單調(diào)區(qū)間;
(Ⅱ)若以圖象上任意一點(diǎn)為切點(diǎn)的切線的斜率 恒成立,求實(shí)數(shù)的最小值。
(Ⅲ)是否存在實(shí)數(shù),使得函數(shù)的圖象與的圖象恰好有四個(gè)不同的交點(diǎn)?若存在,求出的取值范圍,若不存在,說名理由。

查看答案和解析>>

同步練習(xí)冊答案