求矩陣的特征值及對應(yīng)的特征向量.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
A、(-∞,2] | B、[2,+∞) | C、(-∞,-2] | D、[-2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二階矩陣M有特征值λ1=4及屬于特征值4的一個(gè)特征向量并有特征值λ2=-1及屬于特征值-1的一個(gè)特征向量(1)求矩陣M.(2)求M5α.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
二階矩陣M有特征值,其對應(yīng)的一個(gè)特征向量e=,并且矩陣M對應(yīng)的變換將點(diǎn)變換成點(diǎn).
(1)求矩陣M;
(2)求矩陣M的另一個(gè)特征值及對應(yīng)的一個(gè)特征向量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知2×2矩陣A有特征值λ1=3及其對應(yīng)的一個(gè)特征向量α1=,特征值λ2=-1及其對應(yīng)的一個(gè)特征向量α2=,求矩陣A的逆矩陣A-1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若點(diǎn)A(1,1)在矩陣M=對應(yīng)變換的作用下得到的點(diǎn)為B(-1,1),求矩陣M的逆矩陣.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com