一個(gè)袋中有20個(gè)大小相同的小球,其中記上0號的有10個(gè),記上n號的有n個(gè)(n=1,2,3,4).現(xiàn)從袋中任取一球,用ξ表示所取球的標(biāo)號.
(1)求ξ的分布列的數(shù)學(xué)期望和方差;
(2)若η=aξ+b,E(η)=2,D(η)=44,試求a、b的值.
考點(diǎn):離散型隨機(jī)變量的期望與方差
專題:概率與統(tǒng)計(jì)
分析:(1)由題設(shè)知ξ=0,1,2,3,4,分別求出P(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),P(ξ=4),由此能求出ξ的分布列、數(shù)學(xué)期望和方差.
(2)由η=a2Dξ,Eη=aEξ+b,結(jié)合題設(shè)條件,能求出a、b的值.
解答: 解:(1)由題設(shè)知ξ=0,1,2,3,4,
P(ξ=0)=
10
20
=
1
2
,
P(ξ=1)=
1
20

P(ξ=2)=
2
20
=
1
10
,
P(ξ=3)=
3
20
,
P(ξ=4)=
4
20
=
1
5

∴ξ的分布列為:
ξ 0 1 2 3 4
P
1
2
1
20
1
10
3
20
1
5
…(3分)
∴Eξ=
1
2
+1×
1
20
+2×
1
10
+3×
3
20
+4×
1
5
=1.5.…(4分)
Dξ=(0-1.5)2×
1
2
+(1-1.5)2×
1
20
+(2-1.5)2×
1
10
+(3-1.5)2×
3
20
+(4-1.5)2×
1
5
=2.75.…(6分)
(2)由η=a2Dξ,得a2×2.75=44,即a=±4,…(8分)
又Eη=aEξ+b,
∴當(dāng)a=4時(shí),由2=4×1.5+b,得b=-4;
當(dāng)a=-4時(shí),由2=-4×1.5+b,得b=8.
a=4
b=-4
a=-4
b=8
即為所求.…(12分)
點(diǎn)評:本題考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望和方差,是中檔題,是歷年高考的必考題型之一.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
a2
+y2=1(a>4)的離心率的取值范圍是(  )
A、(0,
15
16
B、(0,
15
4
C、(
15
16
,1)
D、(
15
4
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+3x-10≤0}
(1)若集合B=[-2m+1,-m-1],且A∪B=A,求實(shí)數(shù)m的取值范圍;
(2)若集合B={x|-2m+1≤x≤-m-1},且A∪B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式(lgx)2-lgx-2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|-2≤x≤a,a≥-2},B={y|y=2x+3,x∈A},C={y|y=x2,x∈A},求使B∪C=B時(shí)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某學(xué)校高三年級共800名男生中隨機(jī)抽取50名作為樣本測量身高.據(jù)測量,被測學(xué)生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組[155,160)第二組[160,165);…第八組[190,195].下圖是按上述分組方法得到的頻率分布直方圖的一部分.已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.
(Ⅰ)估計(jì)這所學(xué)校高三年級全體男生身高在180cm以上(含180cm)的人數(shù);
(Ⅱ)在上述樣本中從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,記他們的身高分別為x,y,求滿足“|x-y|≤5”的事件的概率;
(Ⅲ)在上述樣本中從最后三組中任取3名學(xué)生參加學(xué)校籃球隊(duì),用ξ表示從第八組中取到的學(xué)生人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

C
 
5
7
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不論m取任何實(shí)數(shù),直線l:(m-1)x-y+2m+1=0恒過一定點(diǎn),則該定點(diǎn)的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-ax+2=0與直線l相切于點(diǎn)A(3,1),則直線l的方程為
 

查看答案和解析>>

同步練習(xí)冊答案