考點(diǎn):數(shù)列的求和,數(shù)列與函數(shù)的綜合
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ):由2S
n=9-a
n仿寫出2S
n-1=9-a
n-1,兩式相減得到
an=an-1(n≥2),判定出數(shù)列{a
n}是以3為首項(xiàng),
為公比的等比數(shù)列,利用公式求出數(shù)列{a
n}和{b
n}的通項(xiàng)公式;
(Ⅱ)由9Ⅰ)求出c
n=
=
(2n-1)×3n,利用錯(cuò)位相減求出數(shù)列{c
n}的前n項(xiàng)和T
n;
(Ⅲ)利用數(shù)列單調(diào)性的定義,判定出數(shù)列{a
2nb
n}為單調(diào)遞減數(shù)列;求出數(shù)列的最大值為 a
2b
1,證明出不等式.
解答:
解(Ⅰ):∵數(shù)列{a
n}的前n項(xiàng)和為S
n,且2S
n=9-a
n①,
∴n≥2時(shí),2S
n-1=9-a
n-1②,
①-②得2a
n=-a
n+a
n-1(n≥2),
∴
an=an-1(n≥2)又∵n=1時(shí)2S
1=2a
1=9-a
1,
∴a
1=3
∴數(shù)列{a
n}是以3為首項(xiàng),
為公比的等比數(shù)列,
∴
an=3•()n-1=32-n;
b
n=3-2log
3a
n=2n-1,
∴{b
n}是首項(xiàng)為1,公差為2的等差數(shù)列.
∴
an=32-n,bn=2n-1(Ⅱ)∵c
n=
=
(2n-1)×3n,
∴
Tn=[1×31+3×32+…+(2n-3)×3n-1+(2n-1)×3
n]③
3Tn=[1×32+3×33+…+(2n-3)×3n+(2n-1)×3
n+1]④
③-④得
-2Tn=[1×3+2(32+33+…+3n)-(2n-1)×3
n+1]
=
[3+-(2n-1)×3n+1]=
[(2-2n)3n-2]∴
Tn=(n-1)•3n-1+(Ⅲ)證明:由(Ⅰ)知a
2nb
n=
9×()2n×(2n-1)∵a
2(n+1)b
n+1-a
2nb
n=
9()2n+2×(2n+1)-9()2n×(2n-1)=
()2n(10-16n)<0∴數(shù)列{a
2nb
n}為單調(diào)遞減數(shù)列;
∴當(dāng)n≥2時(shí),a
2nb
n<a
2b
1=1即當(dāng)n≥2時(shí),a
2nb
n<1.
點(diǎn)評(píng):此題考查已知數(shù)列的遞推關(guān)系求出數(shù)列的通項(xiàng)公式的知識(shí)點(diǎn),屬于中檔題.準(zhǔn)確運(yùn)用等差、等比數(shù)列的通項(xiàng)與求和公式,利用錯(cuò)位相減法求和,是解決本題的關(guān)鍵.