如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求證:AF⊥平面CBF;
(2)求三棱錐C-OEF的體積.
分析:(1)欲證AF⊥平面CBF,根據(jù)直線與平面垂直的判定定理可知只需證AF與平面CBF內(nèi)兩相交直線垂直,根據(jù)面面垂直的性質(zhì)可知CB⊥平面ABEF,而AF?平面ABEF,則AF⊥CB,而AF⊥BF,滿足定理所需條件;
(2)由面面垂直的性質(zhì)可知CB⊥平面ABEF,即棱錐的高為CB,根據(jù)正△OEF的邊長(zhǎng)為半徑,可求出底面面積,然后根據(jù)三棱錐的體積公式進(jìn)行求解即可.
解答:證明:(1)∵平面ABCD⊥平面ABEF,CB⊥AB,
平面ABCD∩平面ABEF=AB
∴CB⊥平面ABEF∵AF?平面ABEF
∴AF⊥CB
又AB為圓O的直徑∴AF⊥BF
∴AF⊥平面CBF
解:(2)過(guò)點(diǎn)F作FG⊥AB于G
∵平面ABCD⊥平面ABEF,
∴FG⊥平面ABCD,F(xiàn)G即正△OEF的高
∴FG=
3
2

∴S△OBC=
1
2

(2)解:由(1)知CB⊥平面ABEF,即CB⊥平面OEF,
∴三棱錐C-OEF的高是CB,
∴CB=AD=1,…(8分)
連接OE、OF,可知OE=OF=EF=1
∴△OEF為正三角形,
∴正△OEF的高是
3
2
,…(10分)
∴三棱錐C-OEF的體積v=
1
3
•CB•S△OEF=
3
12
,…(12分)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是直線與平面垂直的判定,棱錐的體積,其中熟練掌握空間線線垂直,線面垂直與面面垂直之間的相互轉(zhuǎn)化是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
精英家教網(wǎng)
(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省濟(jì)南市高三12月質(zhì)量檢測(cè)數(shù)學(xué)文卷 題型:解答題

(本小題滿分12分)如圖,AB為圓O的直

徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD

所在的平面和圓O所在的平面垂直,且.

⑴求證:

⑵設(shè)FC的中點(diǎn)為M,求證:;

⑶設(shè)平面CBF將幾何體分成的兩個(gè)錐體的體積分別為,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年遼寧省錦州市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:陜西省寶雞中學(xué)2010屆高三適應(yīng)性訓(xùn)練(數(shù)學(xué)理) 題型:填空題

 A.(參數(shù)方程與極坐標(biāo))

直線與直線的夾角大小為         

 

B.(不等式選講)要使關(guān)于x的不等式在實(shí)數(shù)

范圍內(nèi)有解,則A的取值范圍是                  

C.(幾何證明選講) 如圖所示,在圓O中,AB是圓O的直

徑AB =8,E為OB.的中點(diǎn),CD過(guò)點(diǎn)E且垂直于AB,

EF⊥AC,則

CF•CA=            

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案