【題目】已知集合,若對于任意實數(shù)對,存在,使成立,則稱集合是“垂直對點集”;下列四個集合中,是“垂直對點集”的是( )
A.B.
C.D.
【答案】ABC
【解析】
根據(jù)題意給出的定義,從代數(shù)、幾何、反例等角度對每一個選項進行判斷.
選項A:任取,則,取,
故,
所以存在這樣的使得成立,選項A正確;
選項B:任取點,取點,
表示的幾何意義是,
即對曲線每一個點與原點構(gòu)成的直線,與之垂直的直線與曲線都存在交點,
如圖,
當點運動時,直線與曲線均有交點,
選項B是正確的;
選項C:任取點,取點,
表示的幾何意義是,
即對曲線每一個點與原點構(gòu)成的直線,與之垂直的直線與曲線都存在交點,
如圖,
當點運動時,直線與曲線均有交點,
選項C是正確的;
選項D:在函數(shù)上取點時,若存在使得成立,
則,則一定有,不滿足函數(shù)的定義域,
故不能滿足題意中的任意一點這一條件,選項D不正確;
故選:ABC
科目:高中數(shù)學 來源: 題型:
【題目】已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點.
(1)證明:PF⊥FD;
(2)判斷并說明PA上是否存在點G,使得EG∥平面PFD;
(3)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,PA⊥平面ABCD,CD⊥AD,BC∥AD,.
(Ⅰ)求證:CD⊥PD;
(Ⅱ)求證:BD⊥平面PAB;
(Ⅲ)在棱PD上是否存在點M,使CM∥平面PAB,若存在,確定點M的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的極坐標方程是,以極點為原點,以極軸為軸的正半軸,取相同的單位長度,建立平面直角坐標系,直線的參數(shù)方程為 .
(1)寫出直線的普通方程與曲線的直角坐標方程;
(2)設(shè)曲線經(jīng)過伸縮變換得到曲線,曲線上任一點為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年.將年入流量在以上三段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨立.
(1)求未來4年中,至多1年的年入流量超過120的概率;
(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關(guān)系:
年入流量 | |||
發(fā)電量最多可運行臺數(shù) | 1 | 2 | 3 |
若某臺發(fā)電機運行,則該臺年利潤為5000萬元;若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達到最大,應(yīng)安裝發(fā)電機多少臺?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知球O是正三棱錐(底面為正三角形,頂點在底面的射影為底面中心)A-BCD的外接球,BC=3,,點E在線段BD上,且BD=3BE,過點E作圓O的截面,則所得截面圓面積的取值范圍是__.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在學習函數(shù)時,我們經(jīng)歷了“確定函數(shù)的表達式利用函數(shù)圖象研究其性質(zhì)——運用函數(shù)解決問題“的學習過程,在畫函數(shù)圖象時,我們通過列表、描點、連線的方法畫出了所學的函數(shù)圖象.同時,我們也學習過絕對值的意義.
結(jié)合上面經(jīng)歷的學習過程,現(xiàn)在來解決下面的問題:
在函數(shù)中,當時,;當時,.
(1)求這個函數(shù)的表達式;
(2)在給出的平面直角坐標系中,請直接畫出此函數(shù)的圖象并寫出這個函數(shù)的兩條性質(zhì);
(3)在圖中作出函數(shù)的圖象,結(jié)合你所畫的函數(shù)圖象,直接寫出不等式的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)將的方程化為普通方程,將的方程化為直角坐標方程;
(Ⅱ)已知直線的參數(shù)方程為,為參數(shù),且,與交于點,與交于點,且,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com