設F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,與直線y=b相切的⊙F2交橢圓于E,且E是直線EF1與⊙F2的切點,則橢圓的離心率為( 。
分析:由題設知EF2=b,且EF1⊥EF2,再由E在橢圓上,知EF1+EF2=2a.由F1F2=2c,知4c2=(2a-b)2+b2.由此能求出橢圓的離心率.
解答:解:∵F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,
與直線y=b相切的⊙F2交橢圓于E,且E是直線EF1與⊙F2的切點,
∴EF2=b,且EF1⊥EF2,
∵E在橢圓上,∴EF1+EF2=2a.
又∵F1F2=2c,∴F1F22=EF12+EF22,即4c2=(2a-b)2+b2.將c2=a2-b2代入得b=
2
3
a.
e2=
c2
a2
=
a2-b2
a2
=1-(
b
a
2=
5
9

∴橢圓的離心率e=
5
3

故選D.
點評:本題考查橢圓的離心率的求法,解題時要認真審題,仔細解答,注意橢圓的簡單性質的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,若在直線x=
a2
c
上存在點P,使線段PF1的中垂線過點F2,則橢圓的離心率的取值范圍是
3
3
,1)
3
3
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點,若橢圓C上的一點A(1,
3
2
)到F1,F(xiàn)2的距離之和為4.
(1)求橢圓方程;
(2)若M,N是橢圓C上兩個不同的點,線段MN的垂直平分線與x軸交于點P,求證:|
OP
|<
1
2
;
(3)若M,N是橢圓C上兩個不同的點,Q是橢圓C上不同于M,N的任意一點,若直線QM,QN的斜率分別為KQM•KQN.問:“點M,N關于原點對稱”是KQM•KQN=-
3
4
的什么條件?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•南匯區(qū)二模)設F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,其右焦點是直線y=x-1與x軸的交點,短軸的長是焦距的2倍.
(1)求橢圓的方程;
(2)若P是該橢圓上的一個動點,求
PF1
PF2
的最大值和最小值;
(3)是否存在過點A(5,0)的直線l與橢圓交于不同的兩點C、D,使得|F2C|=|F2D|?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•安徽)設橢圓E:
x2
a2
+
y2
1-a2
=1
的焦點在x軸上
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設F1,F(xiàn)2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內的點,直線F2P交y軸于點Q,并且F1P⊥F1Q,證明:當a變化時,點P在某定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•南匯區(qū)二模)設F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,其右焦點是直線y=x-1與x軸的交點,短軸的長是焦距的2倍.
(1)求橢圓的方程;
(2)若P是該橢圓上的一個動點,求
PF1
PF2
的最大值和最小值;
(3)若P是該橢圓上的一個動點,點A(5,0),求線段AP中點M的軌跡方程.

查看答案和解析>>

同步練習冊答案