已知集合S={a1,a2},T={b1,b2},則從集合S到T的映射共有( 。
A、1個B、2個C、3個D、4個
分析:由映射的定義知集合A中每一個元素在集合B中有唯一的元素和它對應,A中a1在集合B中有b1或b2與a1對應,有兩種選擇,同理集合A中a2也有兩種選擇,由分步乘法原理求解即可.
解答:解:由映射的定義知A中a1在集合B中有b1或b2與a1對應,有兩種選擇,
同理集合A中a2也有兩種選擇,
由分步乘法原理得從集合A={a1,a2},到集合B={b1,b2}的不同映射共有2×2=4個
故選D.
點評:本題考查映射的定義和個數(shù)計算、乘法原理,正確把握映射的定義是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素構(gòu)成兩個相應的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A}.其中(a,b)是有序數(shù)對,集合S和T中的元素個數(shù)分別為m和n.若對于任意的a∈A,總有-a∉A,則稱集合A具有性質(zhì)P.
(Ⅰ)檢驗集合{0,1,2,3}與{-1,2,3}是否具有性質(zhì)P并對其中具有性質(zhì)P的集合,寫出相應的集合S和T;
(Ⅱ)對任何具有性質(zhì)P的集合A,證明:n≤
k(k-1)2
;
(Ⅲ)判斷m和n的大小關系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:北京高考真題 題型:解答題

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素構(gòu)成兩個相應的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A},其中(a,b)是有序數(shù)對,集合S和T中的元素個數(shù)分別為m和n,若對于任意的a∈A,總有-aA,則稱集合A具有性質(zhì)P。
(1)檢驗集合{0,1,2,3}與{-1,2,3}是否具有性質(zhì)P并對其中具有性質(zhì)P的集合,寫出相應的集合S和T;
(2)對任何具有性質(zhì)P的集合A,證明: n≤;
(3)判斷m和n的大小關系,并證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學 來源:《1.1 集合》2010年同步練習(深圳外國語學校)(解析版) 題型:解答題

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素構(gòu)成兩個相應的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A}.其中(a,b)是有序數(shù)對,集合S和T中的元素個數(shù)分別為m和n.若對于任意的a∈A,總有-a∉A,則稱集合A具有性質(zhì)P.
(I)檢驗集合{0,1,2,3}與{-1,2,3}是否具有性質(zhì)P并對其中具有性質(zhì)P的集合,寫出相應的集合S和T;
(II)對任何具有性質(zhì)P的集合A,證明:;
(III)判斷m和n的大小關系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:2007年北京市高考數(shù)學試卷(理科)(解析版) 題型:解答題

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素構(gòu)成兩個相應的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A}.其中(a,b)是有序數(shù)對,集合S和T中的元素個數(shù)分別為m和n.若對于任意的a∈A,總有-a∉A,則稱集合A具有性質(zhì)P.
(I)檢驗集合{0,1,2,3}與{-1,2,3}是否具有性質(zhì)P并對其中具有性質(zhì)P的集合,寫出相應的集合S和T;
(II)對任何具有性質(zhì)P的集合A,證明:
(III)判斷m和n的大小關系,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案