如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,連接BC、AC。

(1)求AB和OC的長(zhǎng);
(2)點(diǎn)E從點(diǎn)A出發(fā),沿x軸向點(diǎn)B運(yùn)動(dòng)(點(diǎn)E與點(diǎn)A、B不重合)。過點(diǎn)E作直線l平行BC,交AC于點(diǎn)D。設(shè)AE的長(zhǎng)為m,△ADE的面積為s,求s關(guān)于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時(shí),求出以點(diǎn)E為圓心,與BC相切的圓的面積(結(jié)果保留)。
(1),(2)(3)

試題分析:解:(1)令y=0,即,
整理得
解得:,,
∴ A(—3,0),B(6,0)
令x = 0,得y = —9,
∴ 點(diǎn)C(0,—9)
,,      3分
(2)
∵ l∥BC,
∴ △ADE∽△ACB,
,即
,其中。          6分
(3),

∴ 當(dāng)時(shí),S△CDE取得最大值,且最大值是。
這時(shí)點(diǎn)E(,0),
,
作EF⊥BC,垂足為F,
∵∠EBF=∠CBO,∠EFB=∠COB,
∴△EFB∽△COB,
,即
,
∴ ⊙E的面積為:。
答:以點(diǎn)E為圓心,與BC相切的圓的面積為。     11分
點(diǎn)評(píng):該題主要考查了二次函數(shù)的性質(zhì)、相似三角形的性質(zhì)、圖形面積的求法等綜合知識(shí).在解題時(shí),要多留意圖形之間的關(guān)系,有些時(shí)候?qū)⑺髥栴}進(jìn)行時(shí)候轉(zhuǎn)化可以大大的降低解題的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如果方程表示焦點(diǎn)在y軸的橢圓,那么實(shí)數(shù)k的取值范圍是____________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過拋物線的焦點(diǎn)作一條傾斜角為,長(zhǎng)度不超過8的弦,弦所在的直線與圓
有公共點(diǎn),則的取值范圍是          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,已知是橢圓 的左、右焦點(diǎn),點(diǎn)在橢圓上,線段與圓相切于點(diǎn),且點(diǎn)為線段的中點(diǎn),則橢圓的離心率為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線的準(zhǔn)線方程為,則實(shí)數(shù)(   )
A.4B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,左端點(diǎn)為
(1)求橢圓的方程;
(2)過橢圓的右焦點(diǎn)且斜率為的直線被橢圓截的弦長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)設(shè)圓C:,此圓與拋物線有四個(gè)不同的交點(diǎn),若在軸上方的兩交點(diǎn)分別為,,坐標(biāo)原點(diǎn)為,的面積為
(1)求實(shí)數(shù)的取值范圍;
(2)求關(guān)于的函數(shù)的表達(dá)式及的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線2x2y2=8的實(shí)軸長(zhǎng)是(  )
A.2B.2
C.4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線與雙曲線有相同的焦點(diǎn),點(diǎn)是兩曲線的交點(diǎn),且軸,則雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案