【題目】已知圓O:,直線l:.
若直線l與圓O交于不同的兩點A、B,當(dāng)為銳角時,求k的取值范圍;
若,P是直線l上的動點,過P作圓O的兩條切線PC、PD,切點為C、D,則直線CD是否過定點?若是,求出定點,并說明理由.
若EF、GH為圓O的兩條相互垂直的弦,垂足為,求四邊形EGFH的面積的最大值.
【答案】(1)或;(2)直線CD恒過定點.詳見解析(3)
【解析】
(1)首先可以設(shè)出兩點坐標(biāo),然后聯(lián)立圓與直線方程并得出的值,最后根據(jù)以及即可得出結(jié)果;
(2)首先將帶入直線方程得出直線的解析式,然后設(shè)出點坐標(biāo)并寫出以為直徑的圓的方程,最后將其與圓方程聯(lián)立即可得出直線的方程并根據(jù)直線的方程得出定點坐標(biāo);
(3)首先可以設(shè)圓心到直線的距離分別為、,然后通過勾股定理即可得出的值,再然后寫出與,通過即可求出四邊形的面積的最大值。
(1)根據(jù)題意,設(shè),,
將代入,整理得到:,
則有,解可得:,
而,
為銳角,
又由,
解可得:,
又由,則,
解可得:或;
(2)時,直線l的方程為:,
設(shè),則以為直徑的圓的方程為,
即,將其和圓O:聯(lián)立,消去平方項得:,即為直線的方程,
將其化為知該直線恒過定點,
故直線CD恒過定點;
(3)設(shè)圓心O到直線EF、GH的距離分別為、,
則,
所以,,
所以,
當(dāng)且僅當(dāng)即時,取“”,
所以四邊形EGFH的面積的最大值為。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,攝影愛好者在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測得立柱頂端O的仰角和立柱底部B的俯角均為,已知攝影愛好者的身高約為米(將眼睛S距地面的距離SA按米處理).
(1)求攝影愛好者到立柱的水平距離AB和立柱的高度OB;
(2)立柱的頂端有一長為2米的彩桿MN,且MN繞其中點O在攝影愛好者與立柱所在的平面內(nèi)旋轉(zhuǎn).在彩桿轉(zhuǎn)動的任意時刻,攝影愛好者觀察彩桿MN的視角(設(shè)為)是否存在最大值?若存在,請求出取最大值時的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,其中第一項是,接下來的兩項是,,再接下來的三項是,,,依此類推那么該數(shù)列的前50項和為
A. 1044 B. 1024 C. 1045 D. 1025
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解畢業(yè)班學(xué)業(yè)水平考試學(xué)生的數(shù)學(xué)考試情況,抽取了該校100名學(xué)生的數(shù)學(xué)成績,將所有數(shù)據(jù)整理后,畫出了樣頻率分布直方圖(所圖所示),若第1組第9組的頻率各為x.
(1)求x的值,并估計這次學(xué)業(yè)水平考試數(shù)學(xué)成績的眾數(shù);
(2)若全校有1500名學(xué)生參加了此次考試,估計成績在[80,100)分內(nèi)的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對任意的正整數(shù),總存在正整數(shù),使得數(shù)列的前項和,則稱是“回歸數(shù)列”.
()①前項和為的數(shù)列是否是“回歸數(shù)列”?并請說明理由.②通項公式為的數(shù)列是否是“回歸數(shù)列”?并請說明理由;
()設(shè)是等差數(shù)列,首項,公差,若是“回歸數(shù)列”,求的值.
()是否對任意的等差數(shù)列,總存在兩個“回歸數(shù)列”和,使得成立,請給出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒中裝有編號分別為1,2,3,4的四個形狀大小完全相同的小球.
(1)從盒中任取兩球,求取出的球的編號之和大于5的概率.
(2)從盒中任取一球,記下該球的編號,將球放回,再從盒中任取一球,記下該球的編號,求的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C分別為△ABC的三邊a,b,c所對的角,向量=(sin A,sin B),=(cos B,cos A),且=sin 2C.
(1)求角C的大;
(2)若sin A,sin C,sin B成等差數(shù)列,且,求邊c的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,點在橢圓上.
求橢圓的方程;
已知與為平面內(nèi)的兩個定點,過點的直線與橢圓交于兩點,求四邊形面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com