下圖是由哪個平面圖形旋轉得到的(   )

A.           B.         C.          D.
A

試題分析:根據(jù)面動成體的原理即可解,一個三角形繞直角邊旋轉一周可以得到一個圓錐.一個直角梯形繞著直角邊旋轉一周得到圓臺.解:該幾體的上部分是圓錐,下部分是圓臺,圓錐的軸截面是直角三角形,圓臺的軸截面是直角梯形,∴這個幾何圖形是由直角三角形和直角梯形圍繞直角邊所在的直線為軸旋轉一周得到.故選A
點評:本題主要考查空間感知能力,難度不大,學生應注意培養(yǎng)空間想象能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PA丄平面ABCD,==90°=1200,AD=AB=1,AC交BD于 O 點.
(I)求證:平面PBD丄平面PAC;
(Ⅱ)求三棱錐D-ABP和三棱錐B-PCD的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,菱形的邊長為6,,.將菱形沿對角線折起,得到三棱錐 ,點是棱的中點,.

(1)求證:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在正方體ABCD—A1B1C1D1中,E、F分別為棱BB1和DD1的中點.

(1)求證:平面B1FC//平面ADE;
(2)試在棱DC上取一點M,使平面ADE;
(3)設正方體的棱長為1,求四面體A­1—FEA的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知棱柱的底面是菱形,且,,為棱的中點,為線段的中點,

(Ⅰ)求證: ;
(Ⅱ)判斷直線與平面的位置關系,并證明你的結論;
(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在三棱錐PABC中,已知PC⊥平面ABC,點C在平面PBA內的射影D在直線PB上.

(1)求證:AB⊥平面PBC;
(2)設AB=BC,直線PA與平面ABC所成的角為45°,求異面直線AP與BC所成的角;
(3)在(2)的條件下,求二面角C-PA-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面為正方形,側面PAD是正三角形,且側面PAD⊥底面ABCD,

(I) 求證:平面PAD⊥平面PCD
(II)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4, BD=,AB=2CD=8.

(1)設M是PC上的一點,證明:平面MBD⊥平面PAD;
(2)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖, 在正方體ABCD—A1B1C1D1中,E,F(xiàn)分別是正方形A1B1C1D1和ADD1A1的中心,則EF和BD所成的角是                

查看答案和解析>>

同步練習冊答案