對(duì)任意X∈R,函數(shù)f(x)的導(dǎo)數(shù)存在,若f′(x)>f(x),且a>0,則下列結(jié)論正確的是( 。
分析:構(gòu)造g(x)=
f(x)
ex
,則g(x)=
f(x)-f(x)
ex
>0,利用其單調(diào)性即可得出.
解答:解:設(shè)g(x)=
f(x)
ex
,則g(x)=
f(x)-f(x)
ex
>0,
∴函數(shù)g(x)在R上單調(diào)遞增,
∴a>0時(shí),g(a)>g(0).
f(a)
ea
f(0)
e0

∴f(a)>ea•f(0).
故選D.
點(diǎn)評(píng):正確構(gòu)造函數(shù)和熟練掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•宜春模擬)對(duì)任意x∈R,函數(shù)f(x)的導(dǎo)數(shù)存在,若f′(x)>f(x)且 a>0,則以下正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•東城區(qū)二模)對(duì)任意x∈R,函數(shù)f(x)滿足f(x+1)=
f(x)-[f(x)]2
+
1
2
,設(shè)an=[f(n)]2-f(n),數(shù)列{an}的前15項(xiàng)的和為-
31
16
,則f(15)=
3
4
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•無(wú)為縣模擬)對(duì)任意x∈R,函數(shù)f(x)=ax3+ax2+7x不存在極值點(diǎn)的充要條件是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意x∈R,函數(shù)f(x)同時(shí)具有下列性質(zhì):①f(x+π)=f(x);②函數(shù)f(x)的一條對(duì)稱軸是x=
π
3
,則函數(shù)f(x)可以是( 。
A、f(x)=sin(
x
2
+
π
6
B、f(x)=sin(2x-
π
6
C、f(x)=cos(2x-
π
6
D、f(x)=cos(2x-
π
3

查看答案和解析>>

同步練習(xí)冊(cè)答案