如下圖,在正方體中,中點,的中點,則直線所成角的大小為_______.
解:因為直線在平面ABB1A1內(nèi)的射影與直線垂直,因此利用三垂線定理以及逆定理可知所求的角為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱拄中,側(cè)面,已知

(1)求證:;(4分)
(2)、當的中點時,求二面角的平面角的正切值.(8分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知二面角是直二面角,P為棱AB上一點,PQ、PR分別在平面、內(nèi),且,則為(    )
A.45°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正三棱柱中,AB=1,若二面角的大小為60°,則點到平面的距離為 (  )
A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知平行四邊形和矩形所在的平面互相垂直,,是線段的中點.
(Ⅰ)求二面角的正弦值;
(Ⅱ)設(shè)點為一動點,若點出發(fā),沿棱按照的路線運動到點,求這一過程中形成的三棱錐的體積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,平面,四邊形是正方形, ,點、、分別為線段、的中點.

(Ⅰ)求異面直線所成角的余弦值;
(Ⅱ)在線段上是否存在一點,使得點到平面的距離恰為?若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,是直三棱柱,,點、分別是的中點,若,則所成角的余弦值是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

正方體ABCD-中,求直線與平面所成的角。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,直角梯形ACDE與等腰直角所在平面互相垂直,F(xiàn)為BC的中點,,AE∥CD,.
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案