(本小題滿分13分)
設(shè)函數(shù),其圖像過(guò)點(diǎn)(0,1).
(1)當(dāng)方程的兩個(gè)根分別為是,1時(shí),求f(x)的解析式;
(2)當(dāng)時(shí),求函數(shù)f(x)的極大值與極小值.
解:由題意可知,f(0)=1所以c=1 ………… ………………………. ……………………….1分
(Ⅰ)由得.
因?yàn)?sub>,即的兩個(gè)根分別為
所以解得
故 ………… ………………………. ……………………….6分
(Ⅱ)
所以,………… ………………………. ……………………….7分
①若b>0,則當(dāng)時(shí),函數(shù)f(x)單調(diào)遞增
當(dāng)時(shí),函數(shù)f(x)單調(diào)遞減
當(dāng)時(shí),函數(shù)f(x)單調(diào)遞增
因此,f(x)的極大值為f(0)=c=1,
f(x)的極小值為 ……… ………………………. ……………………….10分
②若b<0,則當(dāng)時(shí),函數(shù)f(x)單調(diào)遞增
當(dāng)時(shí),函數(shù)f(x)單調(diào)遞減
當(dāng)時(shí),函數(shù)f(x)單調(diào)遞增
因此,f(x)的極大值為
f(x)的極小值為f(0)=1.
綜上所述,當(dāng)b>0時(shí), f(x)的極大值為1, 極小值為,
當(dāng)b<0時(shí), f(x)的極大值為, 極小值為1. ………………. ……………………….13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫(huà)出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,為的中點(diǎn)。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來(lái)源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).
(1) 求函數(shù)的表達(dá)式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項(xiàng)和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com