已知函數(shù).
(1)求函數(shù)的定義域和最小正周期;
(2)若,,求的值.

(1)定義域為,最小正周期為;(2).

解析試題分析:(1)先根據(jù)三角函數(shù)解析式的結構特點對自變量列約束條件從而求出函數(shù)的定義域,然后利用輔助角公式將三角函數(shù)式化為的形式,最后利用周期公式求函數(shù)的最小正周期;(2)解法一是利用結合求出的值,進而代數(shù)求出的值;解法二是利用得到并結合求出的值,從而求出的值,進而代數(shù)求出的值.
試題解析:(1),解得,
所以函數(shù)的定義域為
,
的最小正周期為;
(2)解法1:由,
,,
;
解法2:由,得
代入,得
,,又,,
;
考點:1.三角函數(shù)的定義域;2.三角函數(shù)的基本性質(zhì);3.同角三角函數(shù)的基本關系

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知向量
(1)若,且,求角的值;
(2)若,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求的最小正周期及對稱軸方程;
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,若,bc=6,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

下圖是函數(shù))的一段圖像.
 
(1)寫出此函數(shù)的解析式;
(2)求該函數(shù)的對稱軸方程和對稱中心坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)其中向量,.
(1)求的最小值,并求使取得最小值的的集合;
(2)將函數(shù)的圖象沿軸向右平移,則至少平移多少個單位長度,才能使得到的函數(shù)的圖象關于軸對稱?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)=sin(-2x+)+,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間.
(2)函數(shù)f(x)的圖象可以由函數(shù)y=sin 2x(x∈R)的圖象經(jīng)過怎樣的變換得到?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的部分圖象如圖所示,其中點A為最高點,點B,C為圖象與軸的交點,在中,角對邊為,且滿足.

(1)求的面積;
(2)求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設平面向量,,,
⑴若,求的值;(2)若,求函數(shù)的最大值,并求出相應的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=-2sin2x+2sinxcosx+1.
(1)求f(x)的最小正周期及對稱中心;
(2)若x∈,求f(x)的最大值和最小值.

查看答案和解析>>

同步練習冊答案