A. | 12 | B. | 20 | C. | 16 | D. | 32 |
分析 由函數(shù)為奇函數(shù)得到a,b的關系式,結合不等式的性質求出ab的最小值,代入f(1)得答案.
解答 解:∵函數(shù)f(x)=(ab-a-4b-5)x2+$\frac{a+4b}{x}$(a>0,b>0)為奇函數(shù),
∴f(-x)+f(x)=0,即(ab-a-4b-5)x2-$\frac{a+4b}{x}$+(ab-a-4b-5)x2+$\frac{a+4b}{x}$=0.
∴2(ab-a-4b-5)x2 =0,則ab-a-4b-5=0.
即ab-5=a+4b,
∵a>0,b>0,
∴ab-5$≥2\sqrt{4ab}=4\sqrt{ab}$,
∴ab-4$\sqrt{ab}$-5≥0,
解得:$\sqrt{ab}≤-1$(舍)或$\sqrt{ab}≥5$.
則ab≥25.
∴f(1)=ab-a-4b-5+a+4b=ab-5≥25-5=20.
故選:B.
點評 本題考查函數(shù)的奇偶性的性質,訓練了不等式性質的應用及一元二次不等式的解法,屬中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{7}$ | B. | -$\frac{3}{7}$ | C. | -$\frac{7}{3}$ | D. | $\frac{7}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源:2016-2017學年河北冀州市高二文上月考三數(shù)學試卷(解析版) 題型:選擇題
已知函數(shù),若,,互不相等,且,則的取值范圍是( )
A.(10,12) B.(5,6)
C.(1,10) D.(20,24)
查看答案和解析>>
科目:高中數(shù)學 來源:2016-2017學年廣西陸川縣中學高二理9月月考數(shù)學試卷(解析版) 題型:解答題
已知圓:.
(1)直線過點,且與圓交于兩點,若,求直線的方程;
(2)過圓上一動點作平行于軸的直線,設與軸的交點為,若向量,求動點的軌跡方程,并說明此軌跡是什么曲線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com