如圖是一個空間幾何體的三視圖,則該幾何體的表面積為( 。
A、3+
2
+
3
B、6+2
2
+2
3
C、3+2
2
D、2+
2
+
3
考點:由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:根據(jù)幾何體的三視圖,畫出該幾何體的直觀圖,結(jié)合圖形求出答案來.
解答: 解:根據(jù)幾何體的三視圖得,
該幾何體是底面為直角三角形的三棱錐,如圖所示;
∴它的表面積為
S=S+S側(cè)
=
1
2
×
2
×
2
+(
1
2
×
2
×2+
1
2
×2×2+
1
2
×
2
×
22+(
2
)
2

=1+(
2
+2+
3

=3+
2
+
3

故選:A.
點評:本題考查了空間中三視圖的應(yīng)用問題,解題時應(yīng)根據(jù)三視圖畫出幾何體的直觀圖,從而求出答案來,是計算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點M是線段BC的中點,點A在直線BC外,|
BC
|=4,|
AB
+
AC
|=|
AB
-
AC
|,則|
AM
|=( 。
A、8B、4C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有如下對應(yīng)數(shù)據(jù):
x24568
y3040605070
則回歸直線方程可能是( 。
A、
y
=5.5x+17.5
B、
y
=6.5x+17.5
C、
y
=7.5x+17.5
D、
y
=5.5x+19.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列選項中兩個函數(shù)相同的是( 。
A、y=x,y=
x3
x2
B、y=|x|,y=
x2
C、y=1,y=x0
D、y=
x+2
x-2
,y=
x2-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(-1,2),B(2,-2),C(0,3),若點M(a,b)是線段AB上的一點(a≠0),則直線CM的斜率的取值范圍是( 。
A、[-
5
2
,1]
B、[-
5
2
,0)∪(0,1]
C、[-1,
5
2
]
D、(-∞,-
5
2
]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
x≥1
x+y≤3
2x-y≤2
,則目標(biāo)函數(shù)z=x+2y的最大值為( 。
A、1
B、
13
3
C、4
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在進(jìn)行回歸分析時,預(yù)報變量的變化由( 。Q定.
A、解釋變量
B、殘差變量
C、解釋變量與殘差變量
D、都不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ln
1-x
1+x
是定義在(a,b)內(nèi)的奇函數(shù),則b2+b+a的取值范圍為( 。
A、[0,1)
B、(0,1)
C、(0,1]
D、[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別BB1,CD的中點.
(1)求證:AE⊥平面A1FD1
(2)已知G是靠近C1的A1C1的四等分點,求證:EG∥平面A1FD1

查看答案和解析>>

同步練習(xí)冊答案