已知a∈R,函數(shù)f(x)=x2(x-a),若f′(1)=1.
(1)求a的值并求曲線y=f(x)在點(1,f(1))處的切線方程y=g(x);
(2)設(shè)h(x)=f′(x)+g(x),求h(x)在[0,1]上的最大值與最小值.
分析:(1)欲求a 值,先求導(dǎo)數(shù),再結(jié)合f′(1)=1即得;欲求切線方程,只須求出其斜率的正負即可,故先利用導(dǎo)數(shù)求出在x=1處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問題解決.
(2)欲求h(x)在[0,1]上的最大值與最小值,利用導(dǎo)數(shù)解決,研究閉區(qū)間上的最值問題,先求出函數(shù)的極值,比較極值和端點處的函數(shù)值的大小,最后確定出最大值與最小值即可.
解答:解:(1)f'(x)=3x2-2ax,由f'(1)=1得3-2a=1,所以a=1;
當(dāng)a=1時,f(x)=x3-x2,f(1)=0,又f'(1)=1,
所以曲線y=f(x)y=f(x)在(1,f(1))處的切線方程為y-0=1×(x-1),即g(x)=x-1;
(2)由(1)得h(x)=3x2-x-1=3(x-
1
6
)2-
13
12

又h(0)=-1,h(1)=1,h(
1
6
)=-
13
12
,
∴h(x)在[0,1]上有最大值1,有最小值
13
12
點評:本小題主要考查利用導(dǎo)數(shù)研究曲線上某點切線方程、函數(shù)的最值及其幾何意義、直線的方程等基礎(chǔ)知識,考查運算求解能力、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=
1
12
x3+
a+1
2
x2+(4a+1)x

(Ⅰ)如果函數(shù)g(x)=f′(x)是偶函數(shù),求f(x)的極大值和極小值;
(Ⅱ)如果函數(shù)f(x)是(-∞,?+∞)上的單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=ln(x+1)-x2+ax+2.
(1)若函數(shù)f(x)在[1,+∞)上為減函數(shù),求實數(shù)a的取值范圍;
(2)令a=-1,b∈R,已知函數(shù)g(x)=b+2bx-x2.若對任意x1∈(-1,+∞),總存在x2∈[-1,+∞),使得f(x1)=g(x2)成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=
a
x
+lnx-1,g(x)=(lnx-1)
e
x
 
+x
(其中e為自然對數(shù)的底).
(1)當(dāng)a>0時,求函數(shù)f(x)在區(qū)間(0,e]上的最小值;
(2)是否存在實數(shù)x0∈(0,e],使曲線y=g(x)在點x=x0處的切線與y軸垂直?若存在求出x0的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•太原一模)已知a∈R,函數(shù) f(x)=x3+ax2+(a-3)x的導(dǎo)函數(shù)是偶函數(shù),則曲線y=f(x)在原點處的切線方程為
3x+y=0
3x+y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浙江)已知a∈R,函數(shù)f(x)=x3-3x2+3ax-3a+3.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當(dāng)x∈[0,2]時,求|f(x)|的最大值.

查看答案和解析>>

同步練習(xí)冊答案